Intron evolution in Neurospora: the role of mutational bias and selection

  1. Hanna Johannesson1
  1. Uppsala University
  1. * Corresponding author; email: hanna.johannesson{at}ebc.uu.se

Abstract

We used comparative and population genomics to study intron evolutionary dynamics in the fungal model genus Neurospora. For our investigation, we used well-annotated genomes of N. crassa, N. discreta and N. tetrasperma, and 92 resequenced genomes of N. tetrasperma from natural populations. By analyzing the four well-annotated genomes, we identified 9,495 intron sites in 7,619 orthologous genes. Our data supports non-homologous end joining (NHEJ) and tandem duplication as mechanisms for intron gains in the genus, and the RT-mRNA process as a mechanism for intron loss. We found a moderate intron gain rate (5.78 to 6.89 x10-13 intron gains per nucleotide site per year) and a high intron loss rate (7.53 to 13.76 x10-10 intron losses per intron sites per year) as compared to other eukaryotes. The derived intron gains and losses are skewed to high frequencies, relative to neutral SNPs, in natural populations of N. tetrasperma, suggesting that selection is involved in maintaining a high intron turnover. Furthermore, our analyses of the association between intron population-level frequency and genomic features suggest that selection is involved in shaping a 5' intron position bias and a low intron GC content. However, intron sequence analyses suggest the gained introns were not exposed to recent selective sweeps. Taken together, this work contributes to our understanding of the importance of mutational bias and selection in shaping the intron distribution in eukaryotic genomes.

  • Received March 17, 2014.
  • Accepted October 9, 2014.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

ACCEPTED MANUSCRIPT

This Article

  1. Genome Res. gr.175653.114 Published by Cold Spring Harbor Laboratory Press

Article Category

Share

Preprint Server