Mutation Detection by Ligation to Complete n-mer DNA Arrays

Abstract

A new approach to comparative nucleic acid sequence analysis is described that uses the ligation of DNA targets to high-density arrays containing complete sets of covalently attached oligonucleotides of length eight and nine. The combination of enzymatic or chemical ligation with a directed comparative analysis avoids many of the intrinsic difficulties associated with hybridization-based de novo sequence reconstruction methods described previously. Double-stranded DNA targets were fragmented and labeled to produce quasirandom populations of 5′ termini suitable for ligation and detection on the arrays. Kilobase-size DNA targets were used to demonstrate that complete n-mer arrays can correctly verify known sequences and can determine the presence of sequence differences relative to a reference. By use of 9-mer arrays, sequences of 1.2-kb targets were verified with >99.9% accuracy. Mutations in target sequences were detected by directly comparing the intensity pattern obtained for an unknown with that obtained for a known reference sequence. For targets of moderate length (1.2 kb), 100% of the mutations in the queried sequences were detected with 9-mer arrays. For higher complexity targets (2.5 and 16.6 kb), a relatively high percentage of mutations (90% and 66%, respectively) were correctly identified with a low false-positive rate of <0.03 percent. The methods described provide a general approach to analyzing nucleic acid samples on the basis of the interpretation of sequence-specific patterns of hybridization and ligation on complete n-mer oligonucleotide arrays.

Footnotes

  • 1 Present address: Illumina, Inc., San Diego, California 92121 USA.

  • 2 Corresponding author.

  • E-MAIL david_lockhart{at}affymetrix.com; FAX (408) 481-0422.

    • Received September 1, 1998.
    • Accepted October 23, 1998.
| Table of Contents

Preprint Server