Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species
- Phillip A. Morin1,2,8,
- Frederick I. Archer1,
- Andrew D. Foote3,4,
- Julia Vilstrup3,
- Eric E. Allen2,
- Paul Wade5,
- John Durban5,
- Kim Parsons5,
- Robert Pitman1,
- Lewyn Li6,
- Pascal Bouffard6,
- Sandra C. Abel Nielsen3,
- Morten Rasmussen3,
- Eske Willerslev3,
- M. Thomas P. Gilbert3 and
- Timothy Harkins7
- 1 National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, California 92037, USA;
- 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, USA;
- 3 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark;
- 4 University of Aberdeen, Aberdeen IV11 8YJ, United Kingdom;
- 5 Alaska Fisheries Science Center, NOAA Fisheries, Seattle, Washington 98115, USA;
- 6 454 Life Sciences [Roche], Branford, Connecticut 06405, USA;
- 7 Roche Applied Science, Indianapolis, Indiana 46250, USA
Abstract
Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric “ecotypes” with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from ∼150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times.
Footnotes
-
↵8 Corresponding author.
E-mail phillip.morin{at}noaa.gov; fax (858) 546-7003.
-
[Supplemental material is available online at http://www.genome.org. The sequence data from this study have been submitted to GenBank (http://www.ncbi.nlm.nih.gov/genbank) under accession nos. GU187153–GU187164, GU187166–GU187219, and HM060332–HM060334.]
-
Article published online before print. Article and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.102954.109.
- Received September 9, 2009.
- Accepted March 24, 2010.











