Parking Strategies for Genome Sequencing

Table 2.

Approximation of the Strict-Parking-Strategy Gap Distribution

Coverage
Range Curve 40% 50% 60% 70% Jamming limit
[0-L] a + bx 1.4 × 10−3 5.3 × 10−3 2.0 × 10−2 9.6 × 10−2 3.4 × 10−1
a + bx + cx2 6.5 × 10−5 3.8 × 10−4 2.4 × 10−3 2.7 × 10−2 2.4 × 10−1
a + bx + cx2 + dx3 2.3 × 10−6 2.2 × 10−5 2.3 × 10−4 6.9 × 10−3 1.8 × 10−1
ae bx 2.3 × 10−4 1.0 × 10−3 4.8 × 10−3 3.7 × 10−2 2.4 × 10−1
e dx (a + bx + cx2) 8.0 × 10−8 9.4 × 10−3 1.5 × 10−5 1.1 × 10−3 1.1 × 10−1
[L-2L] a + bx 2.1 × 10−3 6.6 × 10−3 1.9 × 10−2 4.5 × 10−2 NA
a + bx + cx2 1.3 × 10−4 6.4 × 10−4 3.2 × 10−3 2.1 × 10−2 NA
a + bx + cx2 + dx3 5.6 × 10−6 4.7 × 10−3 4.3 × 10−4 7.8 × 10−3 NA
ae bx 1.9 × 10−17 1.6 × 10−17 5.1 × 10−17 1.0 × 10−12 NA
[0-2L] a + bx 1.8 × 10−3 7.9 × 10−3 3.3 × 10−2 1.4 × 10−1 NA
a + bx + cx2 1.8 × 10−3 4.7 × 10−3 1.2 × 10−2 5.0 × 10−2 NA
a + bx + cx2 + dx3 1.7 × 10−3 4.5 × 10−3 1.2 × 10−2 4.6 × 10−2 NA
ae bx 6.0 × 10−3 1.4 × 10−2 3.1 × 10−2 5.6 × 10−2 NA
e dx (a + bx + cx2) 1.6 × 10−3 4.4 × 10−3 1.2 × 10−2 4.4 × 10−2 NA
  • Standard error of estimate is tabulated for a curve of the form indicated, over each of the ranges specified. Curve parameters were optimized by Mathematica 4.0 (Wolfram Research) to fit equation 6. The truncation at 2L avoids the tail of the distribution, which is asymptotically zero.

This Article

  1. Genome Res. 10: 1020-1030

Preprint Server