Partitioned Multi-MUM finding for scalable pangenomics with MumemtoM

  1. Ben Langmead
  1. Johns Hopkins University
  • * Corresponding author; email: vshivak1{at}jhu.edu
  • Abstract

    Pangenome collections are growing to hundreds of high-quality genomes. This necessitates scalable methods for constructing pangenome alignments that can incorporate newly-sequenced assemblies. We previously developed Mumemto, which computes maximal unique matches (multi-MUMs) across pangenomes using compressed indexing. In this work, we introduce MumemtoM (Mumemto Merge), comprising two new partitioning and merging strategies. Both strategies enable highly parallel, memory efficient, and updateable computation of multi-MUMs. One of the strategies, called string-based merging, is also capable of conducting the merges in a way that follows the shape of a phylogenetic tree, naturally yielding the multi-MUM for the tree's internal nodes as well as the root. With these strategies, Mumemto now scales to 474 human haplotypes, the only multi-MUM method able to do so. It also introduces a time-memory tradeoff that allows Mumemto to be tailored to more scenarios, including in resource-limited settings.

    • Received May 16, 2025.
    • Accepted November 5, 2025.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    This article has not yet been cited by other articles.

    ACCEPTED MANUSCRIPT

    This Article

    1. Genome Res. gr.280940.125 Published by Cold Spring Harbor Laboratory Press

    Article Category

    ORCID

    Share

    Preprint Server