Unveiling the functional fate of duplicated genes through expression profiling and structural analysis

  1. Irene Julca4,5
  1. 1 SIB Swiss Institute of Bioinformatics, University of Lausanne, BioSoft Research;
  2. 2 SIB Swiss Institute of Bioinformatics;
  3. 3 University of Southern California;
  4. 4 SIB Swiss Institute of Bioinformatics, University of Lausanne
  • * Corresponding author; email: irene.julca{at}unil.ch
  • Abstract

    Gene duplication is a major evolutionary source of functional innovation. Following duplication events, gene copies (paralogues) may undergo various fates, including retention with functional modifications (such as subfunctionalization or neofunctionalization) or loss. When paralogues are retained, this results in complex orthology relationships, including one-to-many or many-to-many. In such cases, determining which one-to-one pair is more likely to have conserved functions can be challenging. It has been proposed that, following gene duplication, the copy that diverges more slowly in sequence is more likely to maintain the ancestral function -referred to here as "the least diverged orthologue (LDO) conjecture". This study explores this conjecture, using a novel method to identify asymmetric evolution of paralogues and apply it to all gene families across the Tree of Life in the PANTHER database. Structural data for over 1 million proteins and expression data for 16 animals and 20 plants were then used to investigate functional divergence following duplication. This analysis, the most comprehensive to date, revealed that whilst the majority of paralogues display similar rates of sequence evolution, significant differences in branch lengths following gene duplication can be correlated with functional divergence. Overall, the results support the least diverged orthologue conjecture, suggesting that the least diverged orthologue (LDO) tends to retain the ancestral function, whilst the most diverged orthologue (MDO) may acquire a new, potentially specialized, role.

    • Received October 29, 2024.
    • Accepted August 7, 2025.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    This article has not yet been cited by other articles.

    ACCEPTED MANUSCRIPT

    This Article

    1. Genome Res. gr.280166.124 Published by Cold Spring Harbor Laboratory Press

    Article Category

    ORCID

    Share

    Preprint Server