Pangenome genotyped structural variation improves molecular phenotype mapping in cattle

  1. Hubert Pausch
  1. ETH Zurich, Institute of Agricultural Sciences
  • * Corresponding author; email: alexander.leonard{at}usys.ethz.ch
  • Abstract

    Expression and splicing quantitative trait loci (e/sQTL) are large contributors to phenotypic variability. Achieving sufficient statistical power for e/sQTL mapping requires large cohorts with both genotypes and molecular phenotypes, and so the genomic variation is often called from short-read alignments which are unable to comprehensively resolve structural variation. Here we build a pangenome from 16 HiFi haplotype-resolved assemblies to identify small and structural variation and genotype them with PanGenie in 307 short-read samples. We find high (>90%) concordance of PanGenie-genotyped and DeepVariant-called small variation, and confidently genotype close to 21M small and 43k structural variants in the larger population. We validate 85% of these structural variants (with MAF>0.1) directly with a subset of 25 short-read samples that also have medium coverage HiFi reads. We then conduct e/sQTL mapping with this comprehensive variant set in a subset of 117 cattle that have testis transcriptome data and find 92 structural variants as causal candidates for eQTL and 73 for sQTL. We find that roughly half of top associated structural variants affecting expression or splicing are transposable elements, such as SV-eQTLs for STN1 and MYH7 and SV-sQTLs for CEP89 and ASAH2. Extensive linkage disequilibrium between small and structural variation results in only 28 additional eQTL and 17 sQTL discovered when including SVs, although many top associated SVs are compelling candidates.

    • Received July 11, 2023.
    • Accepted February 1, 2024.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    Articles citing this article

    ACCEPTED MANUSCRIPT

    This Article

    1. Genome Res. gr.278267.123 Published by Cold Spring Harbor Laboratory Press

    Article Category

    ORCID

    Share

    Preprint Server