Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages

  1. Isheng J Tsai1,3
  1. 1 Biodiversity Research Center, Academia Sinica;
  2. 2 Universite Cote d'Azur, CNRS, INSERM, IRCAN
  • * Corresponding author; email: ijtsai{at}gate.sinica.edu.tw
  • Abstract

    The ecology and genetic diversity of model yeast Saccharomyces cerevisiae prior to human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace where the most divergent natural lineage was discovered. Here, we extensively sampled the broad-leaf forests across this continental island to probe the ancestral species diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between natural lineages and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions which contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.

    • Received October 13, 2021.
    • Accepted March 25, 2022.

    This manuscript is Open Access.

    This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International license), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    Articles citing this article

    OPEN ACCESS ARTICLE
    ACCEPTED MANUSCRIPT

    This Article

    1. Genome Res. gr.276286.121 Published by Cold Spring Harbor Laboratory Press

    Article Category

    Share

    Preprint Server