Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumour cells

  1. Ning Zhang3,4
  1. 1 Peking University;
  2. 2 Harvard University;
  3. 3 Tianjin Medical University Cancer Institute and Hospital
  1. * Corresponding author; email: zhangning{at}tmu.edu.cn

Abstract

Copy number alteration (CNA) is a major contributor to genome instability, a hallmark of cancer. Here we studied genomic alterations in single primary tumour cells and circulating tumour cells (CTCs) from the same patient. Single-nucleotide variations (SNVs) in single cells from both samples occurred sporadically, whereas CNAs among primary tumour cells emerged accumulatively rather than abruptly, converging toward that of CTCs. Focal CNAs affecting MYC gene and PTEN gene were observed only in a minor portion of primary tumour cells but were present in all CTCs, suggesting a strong selection toward metastasis. Single-cell structural variation (SV) analyses revealed a two-step mechanism, a complex rearrangement followed by gene amplification, for the simultaneous formation of anomalous CNAs in multiple chromosome regions. Integrative CNA analyses of 97 CTCs from 23 patients confirmed the convergence of CNAs and revealed single, concurrent, and mutually exclusive CNAs that could be the driving events in cancer metastasis.

  • Received October 4, 2016.
  • Accepted May 3, 2017.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Articles citing this article

ACCEPTED MANUSCRIPT

This Article

  1. Genome Res. gr.216788.116 Published by Cold Spring Harbor Laboratory Press

Article Category

Share

Preprint Server