Whole genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver

  1. Andrew P Feinberg1,3
  1. 1 Johns Hopkins University;
  2. 2 Fudan University
  1. * Corresponding author; email: afeinberg{at}jhu.edu

Abstract

DNA methylation at the 5-postion of cytosine (5mC) is an epigenetic modification that regulates gene expression and cellular plasticity in development and disease. The ten-eleven translocation (TET) gene family oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), providing an active mechanism for DNA demethylation, and may also provide its own regulatory function. Here we applied oxidative bisulfite sequencing to generate whole-genome DNA methylation and hydroxymethylation maps at single-base resolution in paired human liver and lung normal and cancer. We found that 5hmC is significantly enriched in CpG island (CGI) shores while depleted in CGIs themselves, especially in active genes, exhibiting in a 5hmC but not 5mC bimodal distribution around CGI that corresponds to H3K4me1 marks. Hydroxymethylation on promoters, gene bodies, and transcription termination regions showed strong positive correlation with gene expression within and across tissues, suggesting that 5hmC is a marker of active genes and could play a role in gene expression mediated by DNA demethylation. Comparative analysis of methylomes and hydroxymethylomes revealed that 5hmC is significantly enriched in both tissue specific DMRs (t-DMRs) and cancer specific DMRs (c-DMRs), and 5hmC is negatively correlated with methylation changes, especially in non-CGI-associated DMRs. These findings revealed novel reciprocity between epigenetic markers at CGI shores corresponding to differential gene expression in normal tissues and matching tumors. Overall, our study provided a comprehensive analysis of the interplay between the methylome, hydroxymethylome, and histone modifications during tumorigenesis.

  • Received July 7, 2016.
  • Accepted October 12, 2016.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

ACCEPTED MANUSCRIPT

This Article

  1. Genome Res. gr.211854.116 Published by Cold Spring Harbor Laboratory Press

Article Category

Share

Preprint Server