Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation

  1. Qiaolin Deng2,4
  1. 1 Karolinska Institutet and Fudan University;
  2. 2 Karolinska Institutet;
  3. 3 Fudan University
  1. * Corresponding author; email: qiaolin.deng{at}ki.se

Abstract

Pluripotency, differentiation and X chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, while EpiStem cells closely resembled the postimplantaion epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways including PluriNetWork and Focal Adhesion were responsible for the delayed progression of female EpiStem cells. Importantly, we 'digitalized' XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation and XCI.

  • Received November 16, 2015.
  • Accepted July 29, 2016.

This manuscript is Open Access.

This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International license), as described at http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESS ARTICLE
ACCEPTED MANUSCRIPT

This Article

  1. Genome Res. gr.201954.115 Published by Cold Spring Harbor Laboratory Press

Article Category

Share

Preprint Server