Genome-wide analysis of local chromatin packing in Arabidopsis thaliana

  1. Detlef Weigel1,3
  1. 1 Max Planck Institute for Developmental Biology;
  2. 2 Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems
  1. * Corresponding author; email: weigel{at}weigelworld.org

Abstract

The spatial arrangement of interphase chromosomes in the nucleus is important for gene expression and genome function in animals and in plants. The recently developed Hi-C technology is an efficacious method to investigate genome packing. Here we present a detailed Hi-C map of the three-dimensional genome organization of the plant Arabidopsis thaliana. We find that local chromatin packing differs from the patterns seen in animals, with kilobasepair-sized segments that have much higher intra-chromosome interaction rates than neighboring regions, representing a dominant local structural feature of genome conformation in A. thaliana. These regions, which appear as positive strips on two-dimensional representations of chromatin interaction, are enriched in epigenetic marks H3K27me3, H3.1 and H3.3. We also identify over 400 insulator-like regions. Furthermore, although topologically associating domains (TADs), which are prominent in animals, are not an obvious feature of A. thaliana genome packing, we found over 1,000 regions that have properties of TAD boundaries, and a similar number of regions analogous to the interior of TADs. The insulator-like, TAD-boundary-like, and TAD-interior-like regions are each enriched for distinct epigenetic marks, and are each correlated with different gene expression levels. We conclude that epigenetic modifications, gene density, and transcriptional activity combine to shape the local packing of the A. thaliana nuclear genome.

  • Received November 30, 2013.
  • Accepted October 28, 2014.

This manuscript is Open Access.

This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International license), as described at http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESS ARTICLE
ACCEPTED MANUSCRIPT

This Article

  1. Genome Res. gr.170332.113 Published by Cold Spring Harbor Laboratory Press

Article Category

Share

Preprint Server