The spring-loaded genome: Nucleosome redistributions are widespread, transient, and DNA-directed

  1. Jonathan Hancock Dennis1,6
  1. 1 Florida State University;
  2. 2 Massachusetts General Hospital;
  3. 3 Novartis Institutes for Biomedical Research;
  4. 4 UBS Investment Bank;
  5. 5 University of Washington
  1. * Corresponding author; email: dennis{at}bio.fsu.edu

Abstract

Nucleosome occupancy plays a key role in regulating access to the eukaryotic genomes. Although various chromatin regulatory complexes are known to regulate nucleosome occupancy, the role of DNA sequence in this regulation remains unclear, particularly in mammals. To address this problem, we measured nucleosome distribution at high temporal resolution in human cells at hundreds of genes during the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV). We show that nucleosome redistribution peaks at 24 hours post KSHV reactivation and that the nucleosomal redistributions are widespread and transient. To clarify the role of DNA sequence in these nucleosomal redistributions, we compared the genes with altered nucleosome distribution to a sequence-based computer model and in vitro assembled nucleosomes. We demonstrate that both the predicted model and the assembly nucleosome distributions are concordant with the majority of nucleosome redistributions at 24 hours post KSHV reactivation. We suggest a model in which loci are held in unfavorable chromatin architecture and 'spring' to a transient intermediate state directed by DNA sequence information. We propose that DNA sequence plays a more considerable role in the regulation of nucleosome positions than was previously appreciated. The surprising findings that nucleosome redistributions are widespread, transient, and DNA-directed shift the current perspective regarding regulation of nucleosome distribution in humans.

  • Received July 1, 2013.
  • Accepted November 27, 2013.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.

ACCEPTED MANUSCRIPT

Preprint Server