Taurine pangenome uncovers a segmental duplication upstream of KIT associated with depigmentation in white-headed cattle
- Sotiria Milia1,4,
- Alexander S. Leonard1,4,
- Xena Marie Mapel1,
- Sandra Milena Bernal Ulloa2,
- Cord Drögemüller3 and
- Hubert Pausch1
- 1Animal Genomics, ETH Zurich, Zurich 8092, Switzerland;
- 2Animal Physiology, ETH Zurich, Zurich 8092, Switzerland;
- 3Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
-
↵4 These authors contributed equally to this work.
Abstract
Cattle have been selectively bred for coat color, spotting, and depigmentation patterns. The assumed autosomal dominant inherited genetic variants underlying the characteristic white head of Fleckvieh, Simmental, and Hereford cattle have not been identified yet, although the contribution of structural variation upstream of the KIT gene has been proposed. Here, we construct a graph pangenome from 24 haplotype assemblies representing seven taurine cattle breeds to identify and characterize the white-head-associated locus for the first time based on long-read sequencing data and pangenome analyses. We introduce a pangenome-wide association mapping approach that examines assembly path similarities within the graph to reveal an association between two most likely serial alleles of a complex structural variant (SV) 66 kb upstream of KIT and facial depigmentation. The complex SV contains a variable number of tandemly duplicated 14.3 kb repeats, consisting of LTRs, LINEs, and other repetitive elements, leading to misleading alignments of short and long reads when using a linear reference. We align 250 short-read sequencing samples spanning 15 cattle breeds to the pangenome graph, further validating that the alleles of the SV segregate with head depigmentation. We estimate an increased count of repeats in Hereford relative to Simmental and other white-headed cattle breeds from the graph alignment coverage, suggesting a large under-assembly in the current Hereford-based cattle reference genome, which had fewer copies. Our work shows that exploiting assembly path similarities within graph pangenomes can reveal trait-associated complex SVs.
Footnotes
-
[Supplemental material is available for this article.]
-
Article published online before print. Article, supplemental material, and publication date are at https://www.genome.org/cgi/doi/10.1101/gr.279064.124.
- Received February 2, 2024.
- Accepted December 2, 2024.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.











