OMKar automates genome karyotyping using optical maps to identify constitutional abnormalities

  1. Vineet Bafna1,4
  1. 1Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA;
  2. 2Bionano Genomics, Incorporated, San Diego, California 92121, USA;
  3. 3Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria;
  4. 4Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, USA
  1. 5 These authors contributed equally to this work.

  • Corresponding author: vbafna{at}ucsd.edu
  • Abstract

    The whole-genome karyotype refers to the sequence of large chromosomal segments comprising an individual's genotype. Karyotype analysis, which includes identifying aneuploidies and structural rearrangements, is essential for understanding genetic risk factors, informing diagnosis and treatment, and guiding genetic counseling in constitutional disorders. The current karyotyping standard relies on microscopic chromosome examination, a complex and expertise-dependent process with megabase-scale resolution. Optical genome mapping (OGM) technology offers an efficient approach to detect large-scale genomic lesions. Here, we introduce OMKar, a computational method that generates virtual karyotypes from OGM data. OMKar integrates structural variants (SVs) and copy number (CN) variants into a breakpoint graph representation. It re-estimates CNs using integer linear programming to enforce CN balance and then identifies constrained Eulerian paths corresponding to full chromosome structures. OMKar is evaluated on 38 whole-genome simulations of constitutional disorders, achieving 88% precision and 95% recall for SV concordance and a 95% Jaccard score for CN concordance. We further apply OMKar to 154 clinical samples including 50 prenatal, 41 postnatal, and 63 parental genomes collected across 10 sites. It correctly reconstructs the karyotype in 144 cases, including 25 of 25 aneuploidies, 32 of 32 balanced translocations, and 72 of 82 unbalanced rearrangements. Identified disorders include cri-du-chat, Wolf–Hirschhorn, Prader–Willi, Down, and Turner syndromes. Notably, OMKar uncovers plausible genetic mechanisms in five previously unexplained cases. These results demonstrate the accuracy and utility of OMKar for OGM-based constitutional karyotyping.

    Footnotes

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at https://www.genome.org/cgi/doi/10.1101/gr.280536.125.

    • Freely available online through the Genome Research Open Access option.

    • Received February 13, 2025.
    • Accepted August 15, 2025.

    This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    Articles citing this article

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server