Characterization of the distribution and dynamics of chromatin states in the C. elegans germline reveals substantial H3K4me3 remodeling during oogenesis

  1. Valerie Reinke
  1. Department of Genetics, Yale University, New Haven, Connecticut 06520, USA
  • Corresponding author: valerie.reinke{at}yale.edu
  • Abstract

    Chromatin organization in the C. elegans germline is tightly regulated and critical for germ cell differentiation. Although certain germline epigenetic regulatory mechanisms have been identified, how they influence chromatin structure and ultimately gene expression remains unclear, in part because most genomic studies have focused on data collected from intact worms comprising both somatic and germline tissues. We therefore analyzed histone modification and chromatin accessibility data from isolated germ nuclei representing undifferentiated proliferating and meiosis I populations to define chromatin states. We correlated these states with overall transcript abundance, spatiotemporal expression patterns, and the function of small RNA pathways. Because the essential role of the germline is to transmit genetic information and establish gene expression in the early embryo, we compared epigenetic and transcriptomic profiles from undifferentiated germ cells to those of embryos to define the epigenetic changes during this developmental transition. The active histone modification H3K4me3 shows particularly dynamic remodeling as germ cells differentiate into oocytes, which suggests a mechanism for establishing early transcription of essential genes during zygotic genome activation. This analysis highlights the dynamism of the chromatin landscape across developmental transitions and provides a resource for future investigation into epigenetic regulatory mechanisms in germ cells.

    Footnotes

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at https://www.genome.org/cgi/doi/10.1101/gr.278247.123.

    • Freely available online through the Genome Research Open Access option.

    • Received July 3, 2023.
    • Accepted December 19, 2023.

    This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.

    Articles citing this article

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server