De novo individualized disease modules reveal the synthetic penetrance of genes and inform personalized treatment regimens

  1. Hu Li
  1. Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
  • Corresponding author: li.hu{at}mayo.edu
  • Abstract

    Current understandings of individual disease etiology and therapeutics are limited despite great need. To fill the gap, we propose a novel computational pipeline that collects potent disease gene cooperative pathways to envision individualized disease etiology and therapies. Our algorithm constructs individualized disease modules de novo, which enables us to elucidate the importance of mutated genes in specific patients and to understand the synthetic penetrance of these genes across patients. We reveal that importance of the notorious cancer drivers TP53 and PIK3CA fluctuate widely across breast cancers and peak in tumors with distinct numbers of mutations and that rarely mutated genes such as XPO1 and PLEKHA1 have high disease module importance in specific individuals. Furthermore, individualized module disruption enables us to devise customized singular and combinatorial target therapies that were highly varied across patients, showing the need for precision therapeutics pipelines. As the first analysis of de novo individualized disease modules, we illustrate the power of individualized disease modules for precision medicine by providing deep novel insights on the activity of diseased genes in individuals.

    Footnotes

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at https://www.genome.org/cgi/doi/10.1101/gr.275889.121.

    • Freely available online through the Genome Research Open Access option.

    • Received June 14, 2021.
    • Accepted November 30, 2021.

    This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    | Table of Contents
    OPEN ACCESS ARTICLE

    Preprint Server