Dynamic landscape of tandem 3′ UTRs during zebrafish development
- Yuxin Li1,
- Yu Sun1,
- Yonggui Fu1,
- Mengzhen Li,
- Guangrui Huang,
- Chenxu Zhang,
- Jiahui Liang,
- Shengfeng Huang,
- Gaoyang Shen,
- Shaochun Yuan,
- Liangfu Chen,
- Shangwu Chen and
- Anlong Xu2
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P.R. China
-
↵1 These authors contributed equally to this work.
Abstract
Tandem 3′ untranslated regions (UTRs), produced by alternative polyadenylation (APA) in the terminal exon of a gene, could have critical roles in regulating gene networks. Here we profiled tandem poly(A) events on a genome-wide scale during the embryonic development of zebrafish (Danio rerio) using a recently developed SAPAS method. We showed that 43% of the expressed protein-coding genes have tandem 3′ UTRs. The average 3′ UTR length follows a V-shaped dynamic pattern during early embryogenesis, in which the 3′ UTRs are first shortened at zygotic genome activation, and then quickly lengthened during gastrulation. Over 4000 genes are found to switch tandem APA sites, and the distinct functional roles of these genes are indicated by Gene Ontology analysis. Three families of cis-elements, including miR-430 seed, U-rich element, and canonical poly(A) signal, are enriched in 3′ UTR-shortened/lengthened genes in a stage-specific manner, suggesting temporal regulation coordinated by APA and trans-acting factors. Our results highlight the regulatory role of tandem 3′ UTR control in early embryogenesis and suggest that APA may represent a new epigenetic paradigm of physiological regulations.
Footnotes
-
↵2 Corresponding author
E-mail lssxal{at}mail.sysu.edu.cn
-
[Supplemental material is available for this article.]
-
Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.128488.111.
- Received July 1, 2011.
- Accepted July 5, 2012.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.











