Similar compositional biases are caused by very different mutational effects

  1. Eduardo P.C. Rocha1,2,4,
  2. Marie Touchon1,2, and
  3. Edward J. Feil3
  1. 1 Unité Génétique des Génomes Bactériens, URA 2171, Institut Pasteur, 75015 Paris, France;
  2. 2 Atelier de BioInformatique, Université Pierre et Marie Curie-Paris 6, 75005 Paris, France;
  3. 3 Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 1AJ, United Kingdom

Abstract

Compositional replication strand bias, commonly referred to as GC skew, is present in many genomes of prokaryotes, eukaryotes, and viruses. Although cytosine deamination in ssDNA (resulting in C→T changes on the leading strand) is often invoked as its major cause, the precise contributions of this and other substitution types are currently unknown. It is also unclear if the underlying mutational asymmetries are the same among taxa, are stable over time, or how closely the observed biases are to mutational equilibrium. We analyzed nearly neutral sites of seven taxa each with between three and six complete bacterial genomes, and inferred the substitution spectra of fourfold degenerate positions in nonhighly expressed genes. Using a bootstrap procedure, we extracted compositional biases associated with replication and identified the significant asymmetries. Although all taxa showed an overrepresentation of G relative to C on the leading strand (and imbalances between A and T), widely variable substitution asymmetries are noted. Surprisingly, all substitution types show significant asymmetry in at least one taxon, but none were universally biased in all taxa. Notably, in the two most biased genomes, A→G, rather than C→T, shapes the compositional bias. Given the variability in these biases, we propose that the process is multifactorial. Finally, we also find that most genomes are not at compositional equilibrium, and suggest that mutational-based heterotachy is deeply imprinted in the history of biological macromolecules. This shows that similar compositional biases associated with the same essential well-conserved process, replication, do not reflect similar mutational processes in different genomes, and that caution is required in inferring the roles of specific mutational biases on the basis of contemporary patterns of sequence composition.

Footnotes

  • 4 Corresponding author.

    4 E-mail erocha{at}pasteur.fr; fax 33-1-44-27-63-12.

  • [Supplemental material is available online at www.genome.org.]

  • Article published online before print. Article and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.5525106

    • Received May 19, 2006.
    • Accepted August 30, 2006.
| Table of Contents

Preprint Server