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Supplemental Figures 

 

Supplemental Figure S1. Comparison of Davies-Bouldin Index (DBI) across different cell types (ETP, Mono2, Ery) and the entire 

T cell bone marrow dataset (ALL) using three methods (scSHEFT, scGCN, scJoint). The metrics are computed based on original 

cell embeddings to evaluate the clustering performance. Lower DBI values indicate better clustering performance. 

 

 

 

 

 

Supplemental Figure S2. FECH expression dynamics along diffusion-inferred pseudotime across methods. Dots represent 

individual cells colored by cell type. The red line denotes the LOWESS-fitted trend of FECH expression along pseudotime. The 

Spearman’s correlation (ρ) between FECH expression and pseudotime quantifies trajectory continuity, with all correlations 

statistically significant (p < 1e-5). Higher correlation values reflect better capture of erythroid differentiation progression. 
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Supplemental Figure S3. Label transfer matrices comparing predicted labels with ground-truth annotations for scSHEFT and 

eleven baselines on the T cell bone marrow dataset. A clearer diagonal structure indicates better label transfer performance. 

 

 

 

 

 

Supplemental Figure S4. The running time and memory usage of different methods on subsets of the PBMC dataset with 

20,000 to 100,000 cells. 
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Supplemental Figure S5. Label transfer matrices comparing predicted labels with ground-truth annotations for scSHEFT and 

nine baselines under 50% dropout on scRNA-seq data. A clearer diagonal structure indicates better label transfer performance. 

 

 

 

 

Supplemental Figure S6. Label transfer performance of scSHEFT under different hyperparameter settings. 
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Supplemental Figure S7. Comparison of scSHEFT and the MNN-based baseline method Scanorama across datasets. 

 

 

 

Supplemental Figure S8. Label transfer performance of scSHEFT with varying simulated MNN noise across different datasets 

(n=5 repeats with different model random seeds). Error bars indicate mean ± s.d. 

 

 

 

Supplemental Figure S9. Cell-type-specific Accuracy and F1-score for ablation analysis on the T cell bone marrow (paired) 

dataset. 

 



6 

 

 

 

Supplemental Figure S10. Cell-type-specific Accuracy and F1-score for ablation analysis on the PBMC (unpaired) dataset. 

 

 

 

 

 

 

 

  

 CrossEntropy loss InfoNCE loss Anchor loss Center loss Fusion embedding 

Base √ √ - - - 

Base+Anchor √ √ √ - - 

Base+Center √ √ - √ - 

Base+Struct √ √ - - √ 

Base+All √ √ √ √ √ 

Supplemental Table S1. Overview of component inclusion across baseline and ablation variants. 
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Supplemental Notes 

Baseline Methods 

scNym: Python package scNym (v0.3.2) was used for all datasets. The gene expression matrix (GEM) from scRNA-seq 

and the gene activity score (GAS) from scATAC-seq were used as input, normalized (size_factor=1e6), and log-transformed 

before training. For the CITE-ASAP dataset, the preprocessed GEM/GAS matrix was concatenated with the log-normalized 

ADT matrix prior to training. Model training and cell type prediction were performed using the scnym.api.scnym_api 

function with default parameters. 

Portal: Python package Portal (v1.0.2) was used for all datasets. The GEM from scRNA-seq and the GAS from scATAC-

seq were used as input and preprocessed with the portal.model.Model.preprocess function using default parameters. For 

the CITE-ASAP dataset, the preprocessed GEM/GAS matrix was concatenated with the log-normalized ADT matrix before 

training. The model was then trained and evaluated with default settings. Based on the integrated latent representations of 

scRNA-seq and scATAC-seq, the knn_classifier function from Concerto’s implementation was used to assign labels to 

scATAC-seq cells, providing both predicted labels and prediction confidence scores. 

Concerto: Python package Concerto-reproducibility was used for all the datasets. The GEM from scRNA-seq and the 

GAS from scATAC-seq were used as input, and both were preprocessed using the preprocessing_rna function with is_hvg 

set to False. For the CITE-ASAP dataset, the preprocessed GEM/GAS matrix was concatenated with the ADT matrix before 

training. Concerto supports two approaches for label transfer: query-to-reference mapping and semi-supervised learning. We 

evaluated both and found that semi-supervised learning generally achieved better performance. The preprocessed GEM and 

GAS were saved in tfrecord format using the concerto_make_tfrecord_supervised function. Model training was 

performed with concerto_train_inter_supervised_uda, and prediction with concerto_test_inter_supervised, yielding 

integrated latent representations for scRNA-seq and scATAC-seq. Finally, cell type annotation for scATAC-seq was performed 

using the knn_classifier function (k=30), which provided both predicted labels and prediction confidence scores. 

scGCN: Python package scGCN was used for all the datasets. Following the official tutorials, Seurat v4.3.0 was used to 

prepare input data for scGCN. Specifically, the save_processed_data function in data_preprocess_utility.R was used to 

preprocess raw GEM and GAS, and to construct intra- and inter-modality graphs. Because scGCN’s strategy for selecting 

highly variable genes is time-consuming, we subsampled the scRNA-seq data to 10,000 cells (if the dataset contained more 

than 10,000 cells) during gene selection. For the CITE-ASAP dataset, the GEM/GAS matrix was concatenated with the ADT 

matrix before preprocessing. Model training and inference were performed using the default settings in the released code. For 

novel cell type detection, the metrics function in data_preprocess_utility.R was used to compute the entropy score (𝐻) and 

enrichment score (𝐸) for all ATAC cells, and the prediction confidence 𝑝 was calculated as 𝐸 − 𝐻. 

Seurat: R package Seurat (v.4.3.0) was used for all the datasets. The GEM from scRNA-seq and the GAS from scATAC-

seq were used as input and normalized using the NormalizeData function. For the CITE-ASAP dataset, the log-normalized 

GEM/GAS matrix was concatenated with the log-normalized ADT matrix. The FindVariableFeatures function (method = 

"vst") was used to select the top 4,000 most variable genes from the scRNA-seq data. Anchors between scRNA-seq and 

scATAC-seq were identified using the FindTransferAnchors function with 'cca' reduction. Cell type annotations were then 

transferred from scRNA-seq to scATAC-seq using the TransferData function. Prediction confidence scores 𝑝 were directly 

exported from the transfer results. 

scJoint: Python package scJoint was used for all the datasets. The GEM from scRNA-seq and the GAS from scATAC-

seq were binarized using zero thresholding. For the CITE-ASAP dataset, the binarized GEM/GAS matrix was concatenated 

with the log-transformed, normalized ADT matrix prior to training. Training parameters followed the configuration notes 

provided in the official GitHub repository. Prediction confidence scores 𝑝 were calculated as described in the original 

paper. 

scBridge: Python package scBridge was used for all the datasets. The GEM from scRNA-seq and the GAS from 

scATAC-seq were used as inputs. GEM was preprocessed by normalization, log transformation, and scaling, while GAS 

was processed with TF-IDF transformation and scaling, following the default scBridge procedure. For the CITE-ASAP 

dataset, the preprocessed GEM/GAS matrix was concatenated with the log-normalized ADT matrix before training. 
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Training parameters followed the configuration notes provided in the official GitHub repository. Prediction confidence 

scores 𝑝 were calculated as described in the original paper. 

scNCL: Python package scNCL was used for all the datasets. The GEM from scRNA-seq and the GAS from scATAC-

seq were binarized using zero thresholding. For the CITE-ASAP dataset, the binarized GEM/GAS matrix was concatenated 

with the log-transformed, normalized ADT matrix before training. Training parameters followed the configuration notes 

provided in the official GitHub repository. Prediction confidence scores 𝑝 were calculated as described in the original 

paper. 

MultiMap: Python package MultiMap was used for all the datasets. The GEM from scRNA-seq, and both the GAS and 

peak count data from scATAC-seq, were used as inputs. GEM was preprocessed by normalization, log transformation, scaling, 

and principal component analysis (PCA), with results stored in .obsm['X_pca'] for downstream integration. Peak count data 

was processed with TF-IDF transformation followed by LSI dimensionality reduction, stored in .obsm['X_lsi'], as described 

in the MultiMap tutorial. These precomputed reductions were integrated using the MultiMAP.Integration function. The 

integrated latent representations were then used to annotate scATAC-seq cells using the 

sklearn.neighbors.KNeighborsClassifier function with neighborhood size k set to 5. 

GLUE: Python Package GLUE (v 0.3.2) was used for all datasets. The GEM from scRNA-seq and the peak count data 

from scATAC-seq were used as input. GEM was preprocessed by normalization, log transformation, scaling, and principal 

component analysis (PCA). The scATAC-seq data was reduced to 100 dimensions using the scglue.data.lsi function. To 

construct a guidance graph of feature interactions, the scglue.data.get_gene_annotation function was used to supplement 

gene coordinate information from GTF files, and the scglue.genomics.rna_anchored_guidance_graph function was used 

to compute the guidance graph. The scglue.model.configure_dataset function was used to configure the training and test 

datasets with default parameters. Although the training configuration includes the use_cell_type option for supervised 

classification on scRNA-seq data, we found that enabling this option degraded performance, so it was not used. Before training, 

a subgraph was extracted from the guidance graph. Model training was performed using the scglue.models.fit_SCGLUE 

function with the extracted subgraph. Finally, the integrated latent representations were used to annotate scATAC-seq cells 

using the sklearn.neighbors.KNeighborsClassifier function with neighborhood size k set to 5. 

Scanorama: Python Package Scanorama (v 1.7.4) was used for all datasets. The GEM from scRNA-seq and the GAS 

from scATAC-seq were used as inputs and concatenated, with a domain field added to distinguish the two modalities. Both 

datasets were preprocessed by normalization, log transformation, selection of the top 2,000 most variable genes, and principal 

component analysis (PCA). Data integration was performed using the sce.pp.scanorama_integrate function. Finally, 

integrated latent representations were used to annotate scATAC-seq cells using the 

sklearn.neighbors.KNeighborsClassifier function with neighborhood size k set to 5. 

scSHEFT: The GEM from scRNA-seq, as well as the GAS and peak count data from scATAC-seq, were used as inputs. 

GEM and GAS were preprocessed by normalization, log transformation, and scaling. For the CITE-ASAP dataset, the 

binarized GEM/GAS matrix was concatenated with the log-transformed, normalized ADT matrix prior to training. To obtain 

low-dimensional representations of the raw scATAC-seq data, different approaches were used: for the CITE-ASAP dataset, 

the ADT matrix served as the low-dimensional representation of the ASAP data; for other datasets, following Seurat’s tutorial, 

we computed dimension-reduced representations (LSI) of the raw scATAC-seq data by first calculating the TF-IDF matrix 

and then performing singular value decomposition (SVD) on the TF-IDF matrix. 
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Details of data preprocessing 

scSHEFT accepts the GEM of scRNA-seq and the GAS and peak count data of scATAC-seq as the inputs. The GEM and 

GAS were preprocessed by normalization, log transformation and scaling. Note that for the CITE-ASAP dataset, the binarized 

GEM/GAS matrix and the log-transformed, normalized ADT matrix were concatenated before training. The detailed 

preprocessing steps for each dataset are elaborated below:  

• Human SNARE-seq dataset. The gene expression, gene activity, and peak-by-cell matrices were downloaded 

from NCBI GEO accession number GSE126074. Additionally, the human v44 GTF files were obtained for 

downstream analysis. The GAS data was generated using Episcanpy v0.4.0, resulting in a dataset with 1,017 cells 

and 8,459 common genes for the analysis. 

• T cell bone marrow multiome dataset. The T cell bone marrow multiome dataset is provided in GSE200046. For 

convenience, we downloaded the filtered and processed count matrices, including cell type annotations and ATAC 

fragment files from Zenodo (https://doi.org/10.5281/zenodo.6383269). Additionally, the human v44 GTF files were 

obtained for downstream analysis. The GAS data was generated using Episcanpy v0.4.0, resulting in a dataset with 

7,439 cells and 13,916 common genes for analysis. 

• The CD34 bone marrow multiome dataset. The CD34 bone marrow multiome dataset is provided in 

GSE200046. For convenience, we downloaded the filtered and processed count matrices, including cell type 

annotations and ATAC fragment files from Zenodo (https://doi.org/10.5281/zenodo.6383269). Additionally, the 

human v44 GTF files were obtained for downstream analysis. The GAS data was generated using Episcanpy 

v0.4.0, resulting in a dataset with 6,881 cells and 12,066 common genes for analysis. 

• The CITE-ASAP dataset. The original CITE-seq data, ASAP-seq data, and fragments file are provided in 

GSE15647838. For convenience, we downloaded the preprocessed data provided 

in https://github.com/SydneyBioX/scJoint/blob/main/data.zip, which contains 4,644 CITE-seq and 4,506 ASAP-seq 

cells of 7 common types.  

• Mouse SHARE-seq skin dataset. The gene expression, gene activity, and peak-by-cell matrices were downloaded 

from NCBI GEO accession number GSE140203. For convenience, we downloaded the preprocessed data provided 

in https://scglue.readthedocs.io/en/latest/data.html (referred to Ma-2020). Additionally, the mouse vM33 GTF files 

were obtained for downstream analysis. The GAS data was generated using Episcanpy v0.4.0, resulting in a dataset 

with 32,231 cells and 16,375 common genes for analysis. 

• The 10x Multiome dataset. The gene expression, peak-by-cell matrix, and fragments file were downloaded from 

https://www.10xgenomics.com/cn/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-

standard-1-0-0. Additionally, the human v44 GTF files were obtained for downstream analysis. Following the 

settings of scJoint, we first removed cell types with a proportion of less than approximately 1%. The GAS data was 

generated using Episcanpy v0.4.0, resulting in a dataset with 11,363 cells and 7,667 common genes for analysis. 

• The PBMC COVID-19 vaccine dataset. The gene expression matrix, peak-by-cell matrix, and fragments file were 

downloaded from https://zenodo.org/records/8240488. We parsed the .rds files to extract the data and metadata, and 

converted them into h5ad format. Additionally, the human v44 GTF file was obtained for downstream analysis. 

Following the settings of scJoint, we first removed cell types with a proportion of less than approximately 1%.  

Gene activity scores (GAS) were generated using Episcanpy v0.4.0, resulting in a dataset containing 111,351 

scRNA-seq cells, 77,810 scATAC-seq cells, and 15,233 common genes for analysis. 

https://doi.org/10.5281/zenodo.6383269
https://doi.org/10.5281/zenodo.6383269
https://www.nature.com/articles/s41467-023-41795-5#ref-CR38
https://github.com/SydneyBioX/scJoint/blob/main/data.zip
https://scglue.readthedocs.io/en/latest/data.html
https://www.10xgenomics.com/cn/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-1-0-0
https://www.10xgenomics.com/cn/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-1-0-0
https://zenodo.org/records/8240488

