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Generation and merging of the sSNVs 18 

To obtain all possible point mutations in coding regions, we first retrieved all hg38 human 19 

protein-coding transcripts from BioMart (Kinsella et al. 2011) (Version: Ensembl 110). After 20 

removing transcripts containing unknown bases or lacking start/stop codons in their coding 21 

sequences, 84,067 transcripts remained. Next, based on their coding sequences, we simulated 22 

each base mutating into the other three bases, resulting in all possible point mutations in the 23 

coding region. In the second step, we used the Variant Effect Predictor (McLaren et al. 2016) 24 

(Version: Ensembl 110) tool to filter out mutations possessing synonymous consequences. 25 

Additionally, to provide mutation information for the hg19 reference, we performed genome 26 

coordinate conversion using the LiftOver (Kuhn et al. 2013) tool. Due to varying quality control 27 

procedures, sequence variation annotation strategies, and reference genome versions, in case of 28 

omitted data, we also merged sSNVs from CADD (Schubach et al. 2024), FAVOR (Zhou et al. 29 

2023), and synVep (Zeng et al. 2021), which all contain synonymous mutations across the 30 

human genome. 31 

Splice site consensus 32 

In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 33 

5' and 3' splice sites, and the branch site. According to RegSNPs-splicing (Zhang et al. 2017), 34 

if an sSNV falls at the +1, +2, or +3 position of the 5' splice site or the -1 position of the 3' 35 

splice site, we classified it as a variant on splice site consensus (VSS). Otherwise, we classified 36 

it as variants in internal exons (VIE). 37 

Exonic splice regulatory elements 38 

Referring to sSNVs pathogenic prediction tools such as SliVA (Buske et al. 2013), DDIG-39 



SN (Livingstone et al. 2017), and regSNPs-splicing (Zhang et al. 2017), exonic splicing 40 

regulatory (ESR) sequences are considered to be important features when constructing models. 41 

The potential of sSNVs to result in a gain/loss of an ESR may be correlated with its 42 

pathogenicity. Hence, a comprehensive ESR motifs set is curated from RESCUE-ESE 43 

(Fairbrother et al. 2002), FAS-HEX3 (Wang et al. 2004), SpliceAID, RegRNA2 (These two 44 

datasets are retrieved from SynMICdb (Sharma et al. 2019)), Composite-ESR (Ke et al. 2008), 45 

NI-ESR (Stadler et al. 2006), and Ast-ESR (Goren et al. 2006). After merging and removing 46 

duplicates, we have 701 exonic splicing silencer motifs, 1,048 exonic splicing enhancer motifs, 47 

and 285 ESR motifs remaining. The detailed table is available in Supplemental Table S5.  48 

sSNVs from vertebrate species 49 

First, we targeted the species included in the UCSC 100-way vertebrate multiple sequence 50 

alignment. Since Ensembl focuses on vertebrate genomes, and Ensembl Variation performs 51 

quality control on mutations while providing evidence status and functional consequence 52 

annotations, its data quality and reliability are relatively high. Therefore, we obtained sSNV 53 

information for all 17 non-human vertebrate species from Ensembl Variation (Hunt et al. 2018) 54 

(http://www.ensembl.org/info/genome/variation/index.html, downloaded on 2024-05-09). 55 

Additionally, the European Variation Archive (EVA) (Cezard et al. 2022) 56 

(https://www.ebi.ac.uk/eva/, downloaded on 2025-01-17), as the most comprehensive platform 57 

for genetic mutations across all species, offers extensive information on non-human species. To 58 

ensure that the sequence consequences of mutations could be annotated, we filtered vertebrate 59 

species mutations that could be annotated using the VEP with available cache files 60 

(https://ftp.ensembl.org/pub/release-113/variation/indexed_vep_cache/) and added sSNV 61 



information for 7 additional vertebrate species. Since most annotation resources are designed 62 

primarily for humans, we aim to map non-human sSNVs to human reference genomes to enable 63 

shared annotation. However, LiftOver may introduce artifacts when mapping genomic 64 

coordinates across species. We referred to the method used in PrimateAI (Sundaram et al. 2018). 65 

Based on the multiple sequence alignment (MSA, 66 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/, downloaded on 2024-10-67 

18), we mapped non-human mutations onto the human genome. Additionally, common variants 68 

in other primates are largely benign in humans (Gao et al. 2023; Cheng et al. 2023). Therefore, 69 

we selected mutations from five primate species, including those from the Great Ape 70 

(https://eichlerlab.gs.washington.edu/greatape/data) and Han 71 

(https://figshare.com/articles/dataset/Han_etal_Data_tsv_gz/7855850). Since these mutation 72 

datasets were already mapped to hg18 or hg19, we used the LiftOver method to map them to 73 

hg38. Detailed statistics can be found in Supplemental Table S4. 74 

Economic traits-related sSNV from cultivated plants and domesticated animals 75 

To understand the relationship between sSNVs and economic traits in major livestock and 76 

crops, we integrated 11,963 GWAS associations of sSNVs from 17 crops and 4 animals in the 77 

GWAS Atlas (Liu et al. 2023) (https://ngdc.cncb.ac.cn/gwas/, downloaded on 2025-01-06) and 78 

CropGS-Hub (Chen et al. 2024) (https://iagr.genomics.cn/CropGS/#/, downloaded on 2024-11-79 

25) databases. These databases are built based on literature-extracted GWAS information. In 80 

CropGS-Hub, the literature related to Rice and Sorghum is already included in the GWAS Atlas, 81 

so we focused on the literature not covered by it. Detailed statistical information about the data 82 

can be found in Supplemental Table S4. 83 



Literature resource in SynMall 84 

PMC/PubMed query statement 85 

SynMall automatically collects literature from PMC and PubMed using the following 86 

search query: ("synonymous"[Title/Abstract]) AND ("mutation"[Title/Abstract] OR 87 

"variation"[Title/Abstract] OR "variant"[Title/Abstract] OR "mutant"[Title/Abstract]) NOT 88 

("non-synonymous") NOT ("nonsynonymous"). 89 

Criterion standard for human sSNVs 90 

For sSNVs in humans, we aim to extract evidence-supporting associations, categorizing 91 

them as either benign or pathogenic. Therefore, we referred to the criteria of the ACMG 92 

(Richards 2015).  93 

Fields and description of structured information extracted from the literature 94 

In total, 21 fields across three domains are considered when curating each paper. The 95 

literature-central domain provides basic publication details and key supporting evidence 96 

sentences. The variant-central section offers detailed information about the variant, including 97 

allele change, genomic position, strand, coding sequence position, reference single-nucleotide 98 

polymorphism ID, and codon change, as well as additional information related to the gene and 99 

species. The phenotype-central part contains manually annotated data inferring the phenotypic 100 

effects of sSNVs, where the Mechanism field describes how the sSNVs induce the disorder 101 

(e.g., through splicing regulation, mRNA structure stability, protein synthesis, etc.). The Trait 102 

field is designed for non-human species to capture traits associated with sSNVs, while the Trait 103 

Impact field describes the effect of the mutation on the trait, such as promoting or inhibiting, if 104 

applicable. 105 



Batch query performance in SynMall 106 

We evaluated the response speed of batch retrieval in SynMall using Apache JMeter (with 107 

10 concurrent threads simulating multiple users), as summarized in Supplemental Table S3. 108 

When querying 1,000 records, the average response times were 7.35 s for Genomic Coordinates, 109 

0.99 s for Gene Names, and 2.99 s for RS IDs. Please note that the first request or prolonged 110 

inactivity may trigger reinitialization of the database connection pool, leading to slower 111 

response times than those shown in the table. Currently, batch queries support up to 1,000 112 

records per request, as larger queries may result in timeout errors. For datasets exceeding this 113 

limit (1,000–50,000 records), users are advised to use the Annotation module. 114 

Curation of datasets 115 

We compile a benchmark dataset for machine learning using sSNVs curated from multiple 116 

external databases and literature. The dataset includes a balanced training set of 2,362 sSNVs 117 

and a balanced test set of 238 sSNVs. First, we retrieve initial data from ClinVar (downloaded 118 

April 2025) (Landrum et al. 2020), HGMD (Professional 2023.3) (Stenson et al. 2020) , dbDSM 119 

(Wen et al. 2016), and manually reviewed sSNVs from SynMall. In ClinVar, we select variants 120 

labeled as "Benign", "Likely Benign", "Likely Benign/Benign", "Likely 121 

Pathogenic/Pathogenic", "Likely Pathogenic", and "Pathogenic". Only records with a review 122 

status of "criteria provided, multiple submitters, no conflicts", "criteria provided, single 123 

submitter", or "reviewed by expert panel" are included. In HGMD, we include DM-classified 124 

pathogenic synonymous mutations, and in dbDSM, we select variants from manually curated 125 

sources. We remove any variants that appear in both benign and pathogenic categories. To 126 

evaluate VEP performance on rare variants, we filter out common variants with AF > 1e-3, 127 



retaining only rare variants. We control sequence similarity using CD-HIT (Fu et al. 2012), 128 

ensuring that protein sequences in the training and test sets share less than 40% identity. Finally, 129 

we apply a "close-by" strategy (Cheng et al. 2020) to balance pathogenic and benign samples. 130 

For each minority pathogenic sample, we select a benign sample with the closest genomic 131 

position, creating a dataset with balanced positive and negative samples. The full dataset is 132 

available for download on the "Download" page. 133 

Performance evaluation 134 

To evaluate the performance of VEP tools on the synonymous variant test set, we use the 135 

Area Under the Receiver Operating Characteristic Curve (AUC) and the Area Under the 136 

Precision-Recall Curve (AUPR). The ROC curve plots the true positive rate (TPR) against the 137 

false positive rate (FPR) across different classification thresholds, while the Precision-Recall 138 

(PR) curve plots Precision against Recall. Both metrics provide threshold-independent 139 

measures commonly used for assessing binary classification performance. 140 

Notably, some tools produce missing values and fail to provide predictions for certain 141 

variants in the independent test set. To address this, we apply both the "subset" and "pairwise" 142 

evaluation strategies. Specifically, the subset approach extracts the portion of the test set for 143 

which all VEP tools provide prediction scores, and evaluates the performance of all tools 144 

simultaneously on this subset. In contrast, the pairwise approach compares synScore against 145 

each target VEP individually by selecting the subset of variants without missing values for that 146 

tool, and evaluates their relative performance within this set. 147 
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