
Supplemental Material 867

Supplemental Methods S1. Relevance of this work for precision medicine 868

Pharmacogenetics, the study of the response of individuals to drug therapy based on 869

their genome, is a key aspect in precision medicine applications. While external factors, 870

such as diet or environment, can have influence on medication response, genomic 871

information plays an important role, with different individuals having different 872

responses to the same drug. A classic example is ibufenac’s hepatotoxicity differing 873

significantly between the UK and Japan (Shah 2013). Precision medicine aims to 874

maximize the efficacy of drugs and mitigate the risks of side effects by mapping the 875

right drug and the right dose to each individual with the help of genetic data (Shah and 876

Gaedigk 2018). Because the genome determines the expression of all the organism’s 877

enzymes, including the ones that metabolize drugs, a drug response of an individual is 878

directly dependent on the genetically determined concentration-response relationships of 879

the enzymes. Pharmacokinetics (how an organism affects a drug) and 880

pharmacodynamics (how a drug affects an organism) can have significant differences at 881

both individual and population-level (Suarez-Kurtz 2008). To illustrate, in the US, as 882

there is a great ancestral diversity in the overall population, some drug labels include 883

clinical trials’ data on diverse cohorts because of possible population differences in drug 884

response. Therefore, the population differences in drug response have become crucial to 885

establish public health policies, to design and evaluate clinical trials, and to develop, 886

approve, and promote new drugs (Shah and Gaedigk 2018). A recent paper by Tempus 887

Labs, Inc. (Rhead et al. 2023) also underscores the commercial and ethical significance 888

of accurate ancestry inference to ensure equity in precision medicine. 889

Supplemental Methods S2. Rationale behind our choice for a VAE-based 890

approach for SNP data modeling 891

In light of recent transformer-based approaches for genomic data, we clarify why we 892

use an autoencoder-based method, rather than a self-attention architecture: (a) first of 893

all, transformer-based models, such as gLM2 (Cornman et al. 2024), Nucleotide 894

Transformer (Dalla-Torre et al. 2024), GPN-MSA (Benegas et al. 2025), or GROVER 895

(Sanabria et al. 2024), are trained on base pairs, drawing their motivation from large 896
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language models (LLMs) trained on natural language and they model nucleotide 897

sequences as sentences and k-mers are words. By contrast, our setting involves binary 898

SNP data (i.e., the presence or absence of a particular allele at a subset of genomic 899

positions that vary). In essence, these are sparse and tabular features, not continuous or 900

categorical token sequences. The benefits of LLMs for capturing long-range 901

linguistic-like patterns do not directly extend to SNP genotype matrices. The main 902

reasons are explained next; (b) SNP data is not translation invariant, i.e., changing a 903

pattern of SNPs completely results in an alteration of semantic information. Because of 904

this, SNP data is generally treated as tabular rather than sequential data. Moreover, as 905

shown in Figure 5, SNPs do not exhibit long-range population-structure correlations. 906

Our analysis of pairwise mutual information between SNP positions indicates that most 907

pairs of SNPs (Xi, Xj) have negligible mutual information. 908

On top of that, in population genetics, principal component analysis (PCA) remains 909

a strong baseline (Tan et al. 2023). Even more advanced methods for ancestry inference 910

such as ADMIXTURE (Ali-Khan et al. 2010) (soft k-means) can be recast as an 911

autoencoder-like technique. 912

Supplemental Methods S3. Options for simulating admixed individuals 913

under the VAE model 914

Although our experiments in the main manuscript focus on simulating 915

single-ancestry individuals, the conditional VAE framework readily permits simulating 916

admixed genomes. For instance, with a C-VAE, one could partially weigh one-hot 917

encodings for two or more populations. Alternatively, a Y-VAE could sample multiple 918

latent embeddings for different ancestral groups and then combine them. See 919

Supplemental Figure S10 for PCA versus VAE projections of admixed individuals. 920
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Supplemental Methods S4. Datasets 921

We employ a human genome dataset comprising multiple sequences derived from 922

publicly available human whole genome sequences collected from diverse world-wide 923

populations. The three sources are: (a) The 1000 Genomes Project (The 1000 Genomes 924

Project Consortium 2015), reporting genomes of 2,504 individuals from 26 populations 925

from all continents; (b) The Human Genome Diversity Project (Bergström et al. 2020), 926

adding 929 diverse genomes from 54 geographically, linguistically, and culturally diverse 927

human populations; (c) The Simons Genome Diversity Project (Mallick et al. 2016), 928

providing genomes from 300 individuals from 142 diverse populations. The dataset is 929

pruned to contain only individuals identified as belonging to a single genetic ancestry 930

cluster via ADMIXTURE unsupervised clustering without recent admixture. We use 931

single-ancestry labels to simplify the interpretability of the clusters within the latent 932

space, however, it is important to note that the method itself is not limited by the type 933

of labeling used. After pruning, the dataset comprises 2,965 single-ancestry phased 934

human genomes, each containing a maternal and paternal copy, resulting in a total of 935

5,930 haploid sequences, referred to as founders. Founders are split into three 936

non-overlapping groups with proportions 80%, 10% and 10%, to generate the training, 937

validation, and test sets, respectively. Following the simulation scheme outlined in 938

Montserrat, Bustamante, et al. 2020, for each dataset, we simulate samples with the 939

corresponding set of founders via online Wright-Fisher simulation (Gravel 2012; Maples 940

et al. 2013), where, at each VAE forward step, the online simulator produces new 941

samples on-the-fly for each population separately, basing the recombination on the 942

human HapMap genetic map (The International HapMap Consortium 2005). In each 943

simulated batch, we ensure an equal number of individuals are generated for each 944

population group, preventing training bias toward any specific ancestry. Note that we 945

allow admixture at the subpopulation level, except for the dimensionality reduction 946

task, in which we simulate samples within each of the 55 human subpopulations 947

disjointly, so that there is no admixture among subpopulations – thus revealing more 948

granular structure within each population. Refer to the Supplemental Table S1 for the 949

full subpopulations list. 950

The canine genotyping array dataset consists of 722 canine whole genome sequences 951

sourced from Plassais et al. 2019. For this dataset, we sample the most variable SNP 952
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positions among breeds across 38 canine chromosomes, which correspond to a subset of 953

SNPs that matches the genotyping array used by Bartusiak et al. 2022. This dataset 954

encompasses a diverse range of canids, documenting wild canids, indigenous and village 955

dog populations, as well as 144 domestic dog breeds. To manage the extensive breed 956

diversity, we group similar breeds into 15 distinct clades, as outlined in the 957

Supplemental Table S2. 958

Supplemental Table S1. List of human populations in our dataset.
Groupings Size Groupings Size Groupings Size Groupings Size

African (AFR)

Yoruba 130 Biaka 22 Bantu South Africa 4 Masai 2
Gambian Mandinka 113 Mandenka 22 Dinka 3 Saharawi 2
Luhya 100 Mbuti 13 Bantu Tswana 2 Bantu Herero 2
Esan 99 Bantu Kenya 11 Khomani San 2 Somali 2
Mende 85 San 6 Luo 2

Native American-like (AMR)

Peruvian 31 Surui 8 Mexican-American 4 Piapoco 2
Karitiana 12 Maya 7 Mixe 3 Zapotec 2
Pima 12 Colombian 4 Quechua 3 Chane 1

East Asian (EAS)

Japanese 131 Yi 10 Mongolian 9 Ami 2
Southern Han Chinese 105 Uygur 10 Lahu 8 Igorot 2
Han Chinese 103 Daur 10 Naxi 8 Eskimo Sireniki 2
Kinh Vietnamese 99 Northern Han 10 Even 3 Eskimo Naukan 2
Dai Chinese 93 Tujia 9 Tubalar 2 Burmese 2
Han 33 Oroqen 9 Ulchi 2 Itelman 1
Yakut 25 Hezhen 9 Thai 2 Eskimo Chaplin 1
Miao 10 Dai 9 Korean 2 Atayal 1
She 10 Cambodian 9 Mansi 2 Altaian 1
Tu 10 Xibo 9 Kyrgyz 2

European (EUR)

Tuscan 115 Basque 23 Abkhasian 2 Norwegian 1
Spanish 107 Adygei 16 Hungarian 2 Czech 1
Finnish 99 Orcadian 15 Estonian 2 Polish 1
British 91 Bergamo Italian 12 Crete 2 Chechen 1
Sardinian 28 Icelandic 2 Bulgarian 2 Samaritan 1
French 28 Sámi 2 Greek 2 Albanian 1
Russian 25 North Ossetian 2 Lezgin 1

Oceanian (OCE)

Papuan 17 Bouganville 11 Australian 2 Dusun 2

South Asian (SAS)

Gujarati 103 Makrani 25 Hazara 19 Kusunda 2
Indian Telugu 102 Balochi 24 Tajik 2 Kapu 2
Sri Lankan 102 Pathan 24 Relli 2 Irula 2
Punjabi 96 Burusho 24 Yadava 2 Brahmin 2
Bengali 86 Sindhi 24 Mala 2 Khonda Dora 1
Brahui 25 Kalash 22 Madiga 2

West Asian (WAS)

Bedouin 46 Mozabite 27 Georgian Mingrelian 2 Turkish Cappadocia 2
Palestinian 46 Jordanian 3 Iranian 2 Yemenite Jew 2
Druze 42 Armenian 2 Iraqi Jew 2 Lezgin 1
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Supplemental Table S2. List of canine populations in our dataset.

Groupings Size Groupings Size Groupings Size

Terrier 115 European Mastiff 29 Spaniel 17
Wolf 51 Continental Herder 26 Drover 16
Retriever 51 Alpine 22 Mediterranean 13
UK Rural 47 New World 20 Scent Hound 12
Asian Spitz 29 Poodle 18 Pointer Setter 11

Supplemental Methods S5. VAE architecture 959

Given the non-linear relationship between the observed and latent variables, 960

autoencoders are exceptionally well-suited for modeling genomic sequences. They excel 961

in the task of learning novel, meaningful, and compact representations of SNP sequences, 962

which represent the most prevalent genetic variations. The proposed VAE consists of a 963

highly-adaptable and modular architecture, designed to accommodate different modes 964

by utilizing flags for conditioning and denoising. Additionally, the model accepts two 965

sets of parameters: (a) a set of fixed parameters, which defines essential aspects such as 966

the number and size of layers in the encoder/decoder, dropout, batch normalization and 967

activation functions, and (b) a set of hyperparameters, which defines optimizer-related 968

flags and values, including the learning rate α, variational β, weight decay γ, among 969

others. The proposed VAE is composed of two symmetric MLP sub-networks: the 970

encoder and the decoder. Both blocks consist of a stack of either fully-connected layers 971

or windowed fully-connected layers – depending on the task, the network can split the 972

input SNP sequence into fixed-size non-overlapping windows, similarly as in Montserrat, 973

Bustamante, et al. 2019. In the encoder, the layers progressively reduce in size, meaning 974

each subsequent layer contains fewer neurons. Conversely, in the decoder, the layers 975

expand, with each layer having a greater number of neurons in sequence. At the 976

bottleneck of the architecture we find two feature maps: one trained to be the mean 977

vector and another one the log-variance vector. These two feature maps, in conjunction 978

with the VAE reparametrization trick, combine to yield the latent representation of the 979

input z. At each layer within the encoder, we apply batch normalization (Ioffe et al. 980

2015), an operation that enhances the flow of gradients throughout the network. 981

Following each fully connected layer, a non-linearity is applied. We have experimented 982

with a full set of different non-linearities, and the best results are achieved with rectified 983

linear units (ReLUs) (Krizhevsky et al. 2017) and Gaussian error linear units (GELUs) 984
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(Hendrycks et al. 2020), in that order. The final layer of the decoder utilizes the sigmoid 985

activation function to produce the probability vector for SNP positions, denoted as o. 986

These resulting probabilities are clamped with a unit step function 11/2(·) applied 987

elementwise to obtain the reconstruction of the input x̂. While our implementation 988

allows the adjustment of the shape of the network, our current default settings use three 989

dense layers of 512, 64 and 2 neurons, respectively, for the task of dimensionality 990

reduction, and two dense layers of 512 and 64 neurons for all of the other tasks. 991

Supplemental Methods S6. Loss function 992

The loss function employed for training the VAE encompasses two primary 993

objectives: the generative loss term and the latent loss term. 994

The generative loss objective strives for a high-quality reconstruction, aiming to 995

make x̂ as close as possible to x, so that x̂ ≈ x. When we seek to maximize the 996

probability of a reconstructed SNP position xi, 1 ≤ i ≤ d belonging to a known 997

distribution with specific distribution parameters, our goal is to maximize the likelihood 998

function for that particular distribution. In the Results section, we explain that each 999

individual SNP can be effectively modeled with a Bernoulli distribution. Therefore, 1000

maximizing the likelihood for a Bernoulli distribution translates to minimizing the 1001

cross-entropy loss between x and o. 1002

Let θ represent the parameters of the VAE model, denoted as fθ(·), and let us 1003

denote the dataset Dx = {xn|1 ≤ n ≤ N} as the set of d-dimensional samples. 1004

Assuming i.i.d. data samples from the distribution p(Dx), we can define a multinomial 1005

likelihood in the following form: 1006

p(Dx|θ) =
N∏

n=1

p(xn|θ) (17)

The reconstruction loss function considers that the loss of each SNP is independent 1007

of each other. However, that does not imply the VAE models SNPs as independent. On 1008

the contrary, by using non-linearities, the VAE is able to model non-linear relationships 1009

between genetic positions. Therefore, we can approximate the likelihood function as 1010

follows: 1011
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p(Dx|θ) =
N∏

n=1

d∏
i=1

fθ(xn)
xni
i (1− fθ(xn)i)

(1−xni)

=

N∏
n=1

d∏
i=1

(oni)
xni (1− oni)

(1−xni)

(18)

Taking the logarithm on this expression, we obtain: 1012

log p(Dx|θ) =
N∑

n=1

d∑
i=1

[
xni log (oni)

+ (1− xni) log (1− oni)
]

= −
N∑

n=1

ℓBCE(xn,on)

(19)

Thus, the generative loss for the VAE is computed as the binary cross-entropy 1013

(BCE) loss, ℓBCE , between each sample xn and the VAE output on for that sample. 1014

The latent loss encourages z to follow a standard Gaussian distribution, i.e., 1015

z ∼ N (0,1). To compare the distribution of the latent vector with a zero-mean, 1016

unit-variance Gaussian distribution, we employ the Kullback-Leibler (KL) divergence. 1017

This results in DKL (p(z|x)||N (0,1)), where z|x ∼ N (µ,Σ) is the encoder distribution 1018

defined by the two vectors at the bottleneck: the mean vector µ and the logarithm of 1019

the variance vector diag(Σ), as Σ is assumed to be a diagonal covariance matrix. The 1020

latent loss acts as a regularizing term, which is weighted with variational β. The loss for 1021

a given input x and VAE-computed output o is given by: 1022

JV AE(x,o) = ℓBCE(x,o) + βDKL

(
p(z|x)||N (0,1)

)
=

[
d∑

i=1

xi log oi + (1− xi) log (1− oi)

]
︸ ︷︷ ︸

Generative loss

− β
1

2

[
q∑

i=1

(σi + µ2
i − log σi)

]
︸ ︷︷ ︸

Latent loss

(20)

where d denotes the dimensionality of the observed data, x, while q represents the 1023

dimensionality of the latent representation, z. In our experiments, the landscape of 1024

LV AE is traversed by the quasi-hyperbolic momentum variant of Adam (QHAdam) 1025

optimizer (Ma et al. 2019). 1026
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Supplemental Methods S7. Clustering metrics 1027

To quantitatively compare the quality of population groups in both, PCA and VAE 1028

spaces, we employ three clustering metrics: the pseudo F statistic (also known as 1029

Calinski-Harabasz index) (Caliński et al. 1974), the Davies-Bouldin index (DBI) (Davies 1030

et al. 1979), and the silhouette coefficient (SC) (Kaufman et al. 2009). Pseudo F 1031

statistic measures the ratio between the sum of between- and within-cluster dispersion 1032

(BSS and WSS, respectively): 1033

CH(|Y|) = BSS(|Y|)
WSS(|Y|)

· α(|Y|)

=

∑|Y|
k=1

∑N
n=1 1nk||µk − x̄||22∑|Y|

k=1

∑N
n=1 1nk||µk − xn||22

· N − |Y|
|Y| − 1

(21)

where the number of clusters coincides with the number of populations, denoted as |Y|; 1034

N represents the number of samples in the dataset; 1nk serves as an indicator function, 1035

determining whether sample xn, 1 ≤ n ≤ N , belongs to ancestry label k, with 1036

1 ≤ k ≤ |Y|; x̄ represents the mean of the samples, and µk denotes the centroid of the 1037

k-th ancestry. A higher score indicates that the clusters are more compact and 1038

well-separated. Conversely, DBI inversely relates to cluster separation; a smaller DBI 1039

value suggests better separation between clusters as it computes the maximal ratio 1040

between intra-cluster variance and inter-cluster distance (Davies et al. 1979): 1041

DBI(|Y|) = 1

Y

|Y|∑
k=1

max
k ̸=j

[∑N
n=1 1nk||µk − xn||22

||µk − µj ||22

+

∑N
n=1 1nj ||µj − xn||22

||µk − µj ||22

] (22)

Lastly, SC relates the intra-cluster distance of samples and the nearest-cluster 1042

distance. This coefficient is bounded SC(|Y|) ∈ [−1, 1]. A value of ∈ [0.71, 1] is an 1043

indicator of a strong structure in the data. Values below < 0.25 indicate that no 1044

substantial structure has been found (Kaufman et al. 2009). 1045

Supplemental Methods S8. VQ-VAE training configuration and run times 1046

All VQ-VAE models were trained on NVIDIA GeForce RTX 2080 Ti GPUs (11 GB). 1047

A single GPU completed training in roughly 16 minutes for the 10,000-SNP model and 1 1048
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hour 8 minutes for the 50,000-SNP model. Training the 80,000-SNP model on one GPU 1049

required about 2 hours. For the full Chromosome 22 model (317,000 SNPs), we 1050

parallelised the run across four RTX 2080 Ti cards, reducing wall-clock time to 1051

approximately 2 hours. 1052

Supplemental Results S1. Compression factors of PCA versus 1053

ancestry-conditioned VAE 1054

In this setup, the key difference is the inclusion of an additional explanatory variable, 1055

denoted as y, which encodes the ancestry or breed of the subject. In practical terms, 1056

this implies that before compressing a set of SNP arrays, we explicitly condition the 1057

encoder based on ancestry or breed. Similarly, during the expansion step, we condition 1058

the decoder using that same label. Following our experiments, we opted to continue 1059

with the conventional VAE. This decision was based on the slightly worse compression 1060

performance observed with C-VAE and its inability to effectively compress the African 1061

(AFR) population. A comparison between VAE and C-VAE is provided in Supplemental 1062

Table 3.

Supplemental Table S3. Compression factors of VAE versus C-VAE. The compression factors are computed as
ℓ(x)

ℓ(z)+ℓ(A(r)) using test data. A compression ratio of 1 corresponds to the identity, values < 1 and > 1 correspond to

compression and expansion, respectively. Successful compression is marked in bold.|z| is the number of latent factors and α
stands for learning rate.

Models Populations
Type |z| α European

(EUR)
East Asian
(EAS)

Native
American
(AMR)

South
Asian
(SAS)

African
(AFR)

Oceanian
(OCE)

West Asian
(WAS)

VAE 2 10−4 ×0.68 ×0.64 ×0.76 ×0.62 ×0.53 ×0.50 ×0.67
C-VAE ×0.57 ×0.54 ×0.58 ×0.54 ×0.43 ×0.46 ×0.55
VAE 4 10−4 ×0.77 ×0.69 ×0.87 ×0.68 ×0.56 ×0.58 ×0.71
C-VAE ×0.63 ×0.58 ×0.63 ×0.58 ×0.42 ×0.51 ×0.58
VAE 8 10−4 ×1.00 ×0.93 ×1.17 ×0.88 ×0.63 ×0.68 ×0.89
C-VAE ×0.78 ×0.71 ×0.73 ×0.69 ×0.45 ×0.56 ×0.70
VAE 16 10−4 ×1.59 ×1.39 ×1.73 ×1.32 ×0.84 ×1.01 ×1.37
C-VAE ×1.02 ×0.77 ×0.90 ×0.88 ×0.50 ×0.65 ×0.90
VAE 32 10−4 ×2.00 ×1.75 ×2.33 ×1.69 ×1.03 ×1.27 ×1.72
C-VAE ×1.32 ×1.10 ×1.23 ×1.12 ×0.59 ×0.85 ×1.14
VAE 64 10−4 ×2.04 ×1.82 ×2.27 ×1.75 ×1.16 ×1.47 ×1.82
C-VAE ×1.32 ×1.20 ×1.30 ×1.18 ×0.63 ×0.88 ×1.18
VAE 128 10−4 ×1.54 ×1.45 ×1.61 ×1.41 ×1.06 ×1.25 ×1.43
C-VAE ×1.27 ×1.20 ×1.28 ×1.19 ×0.77 ×1.01 ×1.20
VAE 256 10−4 ×0.97 ×0.93 ×1.00 ×0.93 ×0.79 ×0.86 ×0.93
C-VAE ×0.90 ×0.86 ×0.91 ×0.86 ×0.68 ×0.78 ×0.87
VAE 512 10−4 ×0.54 ×0.53 ×0.55 ×0.53 ×0.48 ×0.50 ×0.53
C-VAE ×0.52 ×0.50 ×0.52 ×0.50 ×0.44 ×0.48 ×0.51

1063
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Supplemental Results S2. Synthetic genotypes enable accurate downstream 1064

ancestry classification 1065

To quantify the downstream utility of the genotypes generated by our VAE, we 1066

performed a multiclass ancestry-classification benchmark in which synthetic data served 1067

as training material and real founder genotypes provided an independent test set. 1068

Genotypes were first projected onto their first 50 principal components using a PCA 1069

transformation fitted to founder genotypes. We then train five standard classifiers 1070

(logistic regression, random forest, Support Vector Machines (SVM), gradient boosting, 1071

and Naive Bayes) on the PCA-transformed Wright-Fisher (WF) and VAE data (each 1072

with 19,600 samples), and evaluate their performance on PCA-transformed real founder 1073

genotypes. The results, shown in Supplemental Figure 1, demonstrate that classifiers 1074

trained on VAE-simulated data achieve accuracy levels that are consistently close to 1075

those trained on WF-augmented genotypes across a diverse set of model classes. This 1076

supplemental result suggests that synthetic genotypes generated by our VAE approach 1077

capture meaningful population structure and support downstream ancestry inference. 1078

Logistic
Regression

Random
Forest

SVM Gradient
Boosting

Naive
Bayes

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 o
n 

Fo
un

de
rs

Mutliclass classifier performance

Train: WF Train: VAE

Supplemental Figure S1. Multiclass classifier comparison. Classification ac-
curacy on the first 50 principal components of real founder genotypes using models
trained on the first 50 principal components of a genotype dataset augmented by stan-
dard Wright-Fisher (WF) simulation, and on the first 50 principal components of a
VAE-generated genotype dataset (both with 19,600 samples). While classifiers trained
on Wright-Fisher data serve as a baseline, those trained on VAE-generated data achieve
comparable performance across a range of model classes, indicating the utility and
structural realism of the VAE simulations for downstream ancestry inference tasks.
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Supplemental Results S3. Comparison of GMMN and VAE for genotype 1079

simulation 1080

GMMN are architecturally distinct from VAEs, as well as their objective 1081

criterion—GMMNs rely on matching the statistical moments of real data in the 1082

artificial samples via Maximum Mean Discrepancy (MMD) minimization. Because 1083

training does not require a discriminator (as in GANs) or an encoder (as in VAEs), 1084

GMMNs are in principle conceptually simpler and Perera et al. 2022 argue that this 1085

simplicity makes them easier to train. However, in practice, GMMNs with random 1086

features are computationally restrictive for high-dimensional genotype data. Their loss 1087

requires computing random feature embeddings for each population and retaining large 1088

computational graphs for compute amortization. This leads to high GPU memory usage 1089

and limited scalability. Consistent with the original GMMN paper, we therefore 1090

restricted training to 5,000 SNPs and used 10,000 training samples. This was sufficient 1091

for comparison, but substantially smaller than the genome-wide scale of our VAE 1092

experiments. 1093

Supplemental Figure S2. Comparison of real genotype data with simulated data generated by GMMN and
VAE models. (Left Panels) PCA projections of 5,000 SNPs (human Chromosome 22) generated by GMMN and VAE,
colored by population labels. Principal components were fitted on real 5,000 SNPs founder samples. (Top-right) Folded allele
frequency spectrum comparing real and simulations by GMMN and VAE. (Bottom-right) empirical CDF of per-SNP entropy
distributions, illustrating how the cumulative distribution of uncertainty in GMMN and VAE simulations tracks the real data.

We trained both GMMN and conditional VAE on the same subset. Results are 1094

shown in Supplemental Figure S2. Qualitatively, both methods recover broad ancestry 1095
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structure; cluster locations are similar, with C-VAE clusters appearing smoother, 1096

consistent with a Gaussian latent prior. The reduced SNP set naturally weakens 1097

separation compared to genome-wide panels but still reveals clear population 1098

stratification. In terms of folded AFS, both models recover the overall allele frequency 1099

spectrum of the real founders, including the characteristic excess at low minor-allele 1100

frequencies. We also computed the empirical CDF of per-SNP Bernoulli entropy and it 1101

exposes subtle differences in the low-entropy tail. The C-VAE curve rises earlier than 1102

real, indicating a slightly higher fraction of near-fixed sites (conservative bias; mild 1103

underestimation of diversity at some loci). The GMMN curve is slightly below real at 1104

the left tail and catches up in the mid-range, indicating fewer near-fixed sites and a 1105

mild shift toward moderate entropies (slight overdispersion at some loci, injecting some 1106

extra noise). Both models align well with real data from mid to high entropy, suggesting 1107

overall diversity levels are well captured. In short, GMMN and C-VAE reproduce the 1108

global entropy profile while differing in how aggressively they model low-entropy SNPs. 1109
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Supplemental Figure S3. Comparison of PCA and VAE projections of
African subpopulations. VAE trained genome-wide using 839,629 SNPs and no
admixture between subpopulations. The VAE clusters highlight clear separation of the
Mbuti and Biaka groups from the central African cluster, indicating that the model
effectively captures fine-grained population structure beyond what is observable through
PCA alone.

Supplemental Figure S4. Comparison of PCA and VAE projections of Native
American-like subpopulations. Notably, the VAE produces more compact and
distinct clusters for each subpopulation, highlighting its capacity to capture subtle genetic
differences between subpopulations: Pima (yellow stars), Karitiana (blue triangles), and
Peruvian (green crosses).

November 10, 2025 47/51



Supplemental Figure S5. Comparison of PCA and VAE with a bottleneck in R64 applied to varying lengths
of sequential SNP sequences. VAE models trained genome-wide using different subsets of SNPs (2,000; 5,000; 10,000;
25,000; 50,000; 80,000) with admixture between subpopulations.

Supplemental Figure S6. Comparison of PCA, VAE, and UMAP projections.
(a) First row: PCA, VAE, UMAP projections of 10,000 SNP positions of human
Chromosome 22 using simulated samples; (b) Second row: PCA, VAE, UMAP projections
of 80,000 SNP positions of human Chromosome 22 using (real) founder samples.
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Supplemental Figure S7. Visual effect of LD on PCA projections. We use subsets of sequential SNPs from human
Chromosome 22 of sizes 5,000; 10,000; 20,000; 30,000; 40,000; 50,000; 60,000; 70,000, and 80,000 SNPs. The polarization effect
disappears when we use an effectively large subsample of sequential SNPs.
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Supplemental Figure S8. PCA on a subset of random and sequential SNPs.
The visual difference is due to LD structure.

Supplemental Figure S9. Folded allele frequency spectrum, showing the pro-
portion of SNPs at each minor allele frequency for both, real and simulated data with a
C-VAE model trained genome-wide on 80,000 SNPs on human Chromosome 22. The
y-axis is shown on a logarithmic scale. The result suggests that our simulated data
reflects patterns found in real data.
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Supplemental Figure S10. Comparison of how PCA and VAE represent admixed individuals across generations
of admixture. (Left) Color-coded ancestry estimates of simulated admixed samples; (Center and Right) Simulated admixed
samples are represented in black over the color-coded latent representation of single-ancestry individuals (see legend). (Center)
the same samples embedded via PCA, and (Right) their embedding using a VAE.
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