Supplemental Material

Supplemental Methods S1. Relevance of this work for precision medicine
Pharmacogenetics, the study of the response of individuals to drug therapy based on
their genome, is a key aspect in precision medicine applications. While external factors,
such as diet or environment, can have influence on medication response, genomic
information plays an important role, with different individuals having different
responses to the same drug. A classic example is ibufenac’s hepatotoxicity differing
significantly between the UK and Japan (Shah 2013). Precision medicine aims to
maximize the efficacy of drugs and mitigate the risks of side effects by mapping the
right drug and the right dose to each individual with the help of genetic data (Shah and
Gaedigk 2018). Because the genome determines the expression of all the organism’s
enzymes, including the ones that metabolize drugs, a drug response of an individual is
directly dependent on the genetically determined concentration-response relationships of
the enzymes. Pharmacokinetics (how an organism affects a drug) and
pharmacodynamics (how a drug affects an organism) can have significant differences at
both individual and population-level (Suarez-Kurtz [2008]). To illustrate, in the US, as
there is a great ancestral diversity in the overall population, some drug labels include
clinical trials’ data on diverse cohorts because of possible population differences in drug
response. Therefore, the population differences in drug response have become crucial to
establish public health policies, to design and evaluate clinical trials, and to develop,
approve, and promote new drugs (Shah and Gaedigk 2018)). A recent paper by Tempus
Labs, Inc. (Rhead et al. |[2023)) also underscores the commercial and ethical significance

of accurate ancestry inference to ensure equity in precision medicine.

Supplemental Methods S2. Rationale behind our choice for a VAE-based
approach for SNP data modeling

In light of recent transformer-based approaches for genomic data, we clarify why we
use an autoencoder-based method, rather than a self-attention architecture: (a) first of
all, transformer-based models, such as gLM2 (Cornman et al. [2024)), Nucleotide
Transformer (Dalla-Torre et al. [2024), GPN-MSA (Benegas et al. 2025), or GROVER

(Sanabria et al. 2024)), are trained on base pairs, drawing their motivation from large
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language models (LLMs) trained on natural language and they model nucleotide
sequences as sentences and k-mers are words. By contrast, our setting involves binary
SNP data (i.e., the presence or absence of a particular allele at a subset of genomic
positions that vary). In essence, these are sparse and tabular features, not continuous or
categorical token sequences. The benefits of LLMs for capturing long-range
linguistic-like patterns do not directly extend to SNP genotype matrices. The main
reasons are explained next; (b) SNP data is not translation invariant, i.e., changing a
pattern of SNPs completely results in an alteration of semantic information. Because of
this, SNP data is generally treated as tabular rather than sequential data. Moreover, as
shown in Figure o} SNPs do not exhibit long-range population-structure correlations.
Our analysis of pairwise mutual information between SNP positions indicates that most
pairs of SNPs (X;, X;) have negligible mutual information.

On top of that, in population genetics, principal component analysis (PCA) remains
a strong baseline (Tan et al. 2023)). Even more advanced methods for ancestry inference
such as ADMIXTURE (Ali-Khan et al. 2010) (soft k-means) can be recast as an

autoencoder-like technique.

Supplemental Methods S3. Options for simulating admixed individuals
under the VAE model

Although our experiments in the main manuscript focus on simulating
single-ancestry individuals, the conditional VAE framework readily permits simulating
admixed genomes. For instance, with a C-VAE, one could partially weigh one-hot
encodings for two or more populations. Alternatively, a Y-VAE could sample multiple
latent embeddings for different ancestral groups and then combine them. See

Supplemental Figure S10 for PCA versus VAE projections of admixed individuals.
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Supplemental Methods S4. Datasets

We employ a human genome dataset comprising multiple sequences derived from
publicly available human whole genome sequences collected from diverse world-wide
populations. The three sources are: (a) The 1000 Genomes Project (The 1000 Genomes
Project Consortium 2015)), reporting genomes of 2,504 individuals from 26 populations
from all continents; (b) The Human Genome Diversity Project (Bergstrom et al. [2020)),
adding 929 diverse genomes from 54 geographically, linguistically, and culturally diverse
human populations; (c) The Simons Genome Diversity Project (Mallick et al. 2016]),
providing genomes from 300 individuals from 142 diverse populations. The dataset is
pruned to contain only individuals identified as belonging to a single genetic ancestry
cluster via ADMIXTURE unsupervised clustering without recent admixture. We use
single-ancestry labels to simplify the interpretability of the clusters within the latent
space, however, it is important to note that the method itself is not limited by the type
of labeling used. After pruning, the dataset comprises 2,965 single-ancestry phased
human genomes, each containing a maternal and paternal copy, resulting in a total of
5,930 haploid sequences, referred to as founders. Founders are split into three
non-overlapping groups with proportions 80%, 10% and 10%, to generate the training,
validation, and test sets, respectively. Following the simulation scheme outlined in
Montserrat, Bustamante, et al. 2020, for each dataset, we simulate samples with the
corresponding set of founders via online Wright-Fisher simulation (Gravel [2012; Maples
et al. 2013)), where, at each VAE forward step, the online simulator produces new
samples on-the-fly for each population separately, basing the recombination on the
human HapMap genetic map (The International HapMap Consortium [2005). In each
simulated batch, we ensure an equal number of individuals are generated for each
population group, preventing training bias toward any specific ancestry. Note that we
allow admixture at the subpopulation level, except for the dimensionality reduction
task, in which we simulate samples within each of the 55 human subpopulations
disjointly, so that there is no admixture among subpopulations — thus revealing more
granular structure within each population. Refer to the Supplemental Table S1 for the
full subpopulations list.

The canine genotyping array dataset consists of 722 canine whole genome sequences

sourced from Plassais et al. [2019, For this dataset, we sample the most variable SNP
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positions among breeds across 38 canine chromosomes, which correspond to a subset of

SNPs that matches the genotyping array used by Bartusiak et al. 2022, This dataset

encompasses a diverse range of canids, documenting wild canids, indigenous and village

dog populations, as well as 144 domestic dog breeds. To manage the extensive breed

diversity, we group similar breeds into 15 distinct clades, as outlined in the

Supplemental Table S2.

Supplemental Table S1.

List of human populations in our dataset.

Groupings Size ‘ Groupings Size ‘ Groupings Size ‘ Groupings Size
African (AFR)
Yoruba 130 | Biaka 22 Bantu South Africa 4 Masai 2
Gambian Mandinka 113 | Mandenka 22 Dinka 3 Saharawi 2
Luhya 100 | Mbuti 13 | Bantu Tswana 2 Bantu Herero 2
Esan 99 Bantu Kenya 11 Khomani San 2 Somali 2
Mende 85 | San 6 Luo 2
Native American-like (AMR)

Peruvian 31 Surui 8 Mexican-American 4 Piapoco 2
Karitiana 12 | Maya 7 Mixe 3 Zapotec 2
Pima 12 Colombian 4 Quechua 3 Chane 1

East Asian (EAS)
Japanese 131 | Yi 10 | Mongolian 9 Ami 2
Southern Han Chinese 105 | Uygur 10 | Lahu 8 Igorot 2
Han Chinese 103 | Daur 10 | Naxi 8 Eskimo Sireniki 2
Kinh Vietnamese 99 Northern Han 10 | Even 3 Eskimo Naukan 2
Dai Chinese 93 | Tujia 9 Tubalar 2 Burmese 2
Han 33 Orogen 9 Ulchi 2 Ttelman 1
Yakut 25 Hezhen 9 Thai 2 Eskimo Chaplin 1
Miao 10 | Dai 9 Korean 2 Atayal 1
She 10 Cambodian 9 Mansi 2 Altaian 1
Tu 10 | Xibo 9 Kyrgyz 2

European (EUR)
Tuscan 115 | Basque 23 | Abkhasian 2 Norwegian 1
Spanish 107 | Adygei 16 | Hungarian 2 Czech 1
Finnish 99 Orcadian 15 Estonian 2 Polish 1
British 91 Bergamo Italian 12 Crete 2 Chechen 1
Sardinian 28 | Icelandic 2 Bulgarian 2 Samaritan 1
French 28 Sami 2 Greek 2 Albanian 1
Russian 25 North Ossetian 2 Lezgin 1

Oceanian (OCE)

Papuan 17 ‘ Bouganville 11 ‘ Australian 2 Dusun 2

South Asian (SAS)
Gujarati 103 | Makrani 25 Hazara 19 Kusunda 2
Indian Telugu 102 | Balochi 24 | Tajik 2 Kapu 2
Sri Lankan 102 | Pathan 24 Relli 2 Trula 2
Punjabi 96 Burusho 24 Yadava 2 Brahmin 2
Bengali 86 Sindhi 24 | Mala 2 Khonda Dora 1
Brahui 25 Kalash 22 Madiga 2

West Asian (WAS)
Bedouin 46 | Mozabite 27 | Georgian Mingrelian 2 Turkish Cappadocia 2
Palestinian 46 Jordanian 3 Iranian 2 Yemenite Jew 2
Druze 42 Armenian 2 Iraqi Jew 2 Lezgin 1
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Supplemental Table S2. List of canine populations in our dataset.

Groupings Size ‘ Groupings Size ‘ Groupings Size
Terrier 115 | European Mastiff 29 Spaniel 17
Wolf 51 Continental Herder 26 Drover 16
Retriever 51 Alpine 22 Mediterranean 13
UK Rural 47 New World 20 Scent Hound 12
Asian Spitz 29 | Poodle 18 | Pointer Setter 11

Supplemental Methods S5. VAE architecture

Given the non-linear relationship between the observed and latent variables,
autoencoders are exceptionally well-suited for modeling genomic sequences. They excel
in the task of learning novel, meaningful, and compact representations of SNP sequences,
which represent the most prevalent genetic variations. The proposed VAE consists of a
highly-adaptable and modular architecture, designed to accommodate different modes
by utilizing flags for conditioning and denoising. Additionally, the model accepts two
sets of parameters: (a) a set of fized parameters, which defines essential aspects such as
the number and size of layers in the encoder/decoder, dropout, batch normalization and
activation functions, and (b) a set of hyperparameters, which defines optimizer-related
flags and values, including the learning rate «, variational 3, weight decay -y, among
others. The proposed VAE is composed of two symmetric MLP sub-networks: the
encoder and the decoder. Both blocks consist of a stack of either fully-connected layers
or windowed fully-connected layers — depending on the task, the network can split the
input SNP sequence into fixed-size non-overlapping windows, similarly as in Montserrat,
Bustamante, et al. |2019l In the encoder, the layers progressively reduce in size, meaning
each subsequent layer contains fewer neurons. Conversely, in the decoder, the layers
expand, with each layer having a greater number of neurons in sequence. At the
bottleneck of the architecture we find two feature maps: one trained to be the mean
vector and another one the log-variance vector. These two feature maps, in conjunction
with the VAE reparametrization trick, combine to yield the latent representation of the
input z. At each layer within the encoder, we apply batch normalization (Ioffe et al.
2015)), an operation that enhances the flow of gradients throughout the network.
Following each fully connected layer, a non-linearity is applied. We have experimented
with a full set of different non-linearities, and the best results are achieved with rectified

linear units (ReLUs) (Krizhevsky et al. 2017)) and Gaussian error linear units (GELUs)
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(Hendrycks et al. [2020)), in that order. The final layer of the decoder utilizes the sigmoid

activation function to produce the probability vector for SNP positions, denoted as o.

These resulting probabilities are clamped with a unit step function 1.,(-) applied

elementwise to obtain the reconstruction of the input €. While our implementation

allows the adjustment of the shape of the network, our current default settings use three

dense layers of 512, 64 and 2 neurons, respectively, for the task of dimensionality

reduction, and two dense layers of 512 and 64 neurons for all of the other tasks.

Supplemental Methods S6.

The loss function employed for training the VAE encompasses two primary

objectives: the generative loss term and the latent loss term.

Loss function

The generative loss objective strives for a high-quality reconstruction, aiming to

make & as close as possible to @, so that & ~ . When we seek to maximize the

probability of a reconstructed SNP position x;,1 < i < d belonging to a known

distribution with specific distribution parameters, our goal is to maximize the likelihood

function for that particular distribution. In the Results section, we explain that each

individual SNP can be effectively modeled with a Bernoulli distribution. Therefore,

maximizing the likelihood for a Bernoulli distribution translates to minimizing the

cross-entropy loss between x and o.

Let 6 represent the parameters of the VAE model, denoted as fg(-), and let us

denote the dataset D, = {x,|1 <n < N} as the set of d-dimensional samples.

Assuming i.i.d. data samples from the distribution p(D,;), we can define a multinomial

likelihood in the following form:

p(D:10) = [] p(2.l6)

(17)

The reconstruction loss function considers that the loss of each SNP is independent

of each other. However, that does not imply the VAE models SNPs as independent. On

the contrary, by using non-linearities, the VAE is able to model non-linear relationships

between genetic positions. Therefore, we can approximate the likelihood function as

follows:
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Taking the logarithm on this expression, we obtain:
N d
log p(D,10) = ZZ {xm log (o)
n=11=1
+ (1= i) log (1 — om-)] (19)

- — Z EBCE(:Env On)
n=1

Thus, the generative loss for the VAE is computed as the binary cross-entropy
(BCE) loss, {pc g, between each sample @, and the VAE output o,, for that sample.

The latent loss encourages z to follow a standard Gaussian distribution, i.e.,
z ~N(0,1). To compare the distribution of the latent vector with a zero-mean,
unit-variance Gaussian distribution, we employ the Kullback-Leibler (KL) divergence.
This results in Dk, (p(z|x)||N(0,1)), where z|z ~ N(u,X) is the encoder distribution
defined by the two vectors at the bottleneck: the mean vector g and the logarithm of
the variance vector diag(X), as ¥ is assumed to be a diagonal covariance matrix. The
latent loss acts as a regularizing term, which is weighted with variational 5. The loss for

a given input & and VAE-computed output o is given by:

Ty ap(,0) = lyos(w, 0) + 8Dk (p(]2) N (0,1))

= [Z z;logo; + (1 —x;) log (1 — Oz)]

Generative loss

B SR

i=1

Latent loss
where d denotes the dimensionality of the observed data, x, while ¢ represents the
dimensionality of the latent representation, z. In our experiments, the landscape of
Ly ap is traversed by the quasi-hyperbolic momentum variant of Adam (QHAdam)

optimizer (Ma et al. |2019)).
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Supplemental Methods S7. Clustering metrics

To quantitatively compare the quality of population groups in both, PCA and VAE
spaces, we employ three clustering metrics: the pseudo F statistic (also known as
Calinski-Harabasz index) (Calinski et al. [1974), the Davies-Bouldin indexz (DBI) (Davies
et al. [1979)), and the silhouette coefficient (SC) (Kaufman et al. 2009). Pseudo F
statistic measures the ratio between the sum of between- and within-cluster dispersion

(BSS and WSS, respectively):

CHI) =y 51 ()

N N _
SN Ll - E3 N~ (V)

LS Ll — a2 I

where the number of clusters coincides with the number of populations, denoted as |Y|;
N represents the number of samples in the dataset; 1, serves as an indicator function,
determining whether sample x,, 1 <n < N, belongs to ancestry label k, with

1 <k < |Y|; © represents the mean of the samples, and g, denotes the centroid of the
k-th ancestry. A higher score indicates that the clusters are more compact and
well-separated. Conversely, DBI inversely relates to cluster separation; a smaller DBI
value suggests better separation between clusters as it computes the maximal ratio
between intra-cluster variance and inter-cluster distance (Davies et al. [1979):

N N 2
1 Ll —
DBI(|Y]) = = » max > on—1 Lokllr — xull3

Y ekt ek — w5113

(22)

N
+Zn:l 1"]'”“]' — xn”%
per — 15015
Lastly, SC relates the intra-cluster distance of samples and the nearest-cluster
distance. This coefficient is bounded SC(|Y]) € [-1,1]. A value of € [0.71,1] is an
indicator of a strong structure in the data. Values below < 0.25 indicate that no

substantial structure has been found (Kaufman et al. |2009)).

Supplemental Methods S8. VQ-VAE training configuration and run times
All VQ-VAE models were trained on NVIDIA GeForce RTX 2080 Ti GPUs (11 GB).
A single GPU completed training in roughly 16 minutes for the 10,000-SNP model and 1
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Supplemental Table S3.

hour 8 minutes for the 50,000-SNP model. Training the 80,000-SNP model on one GPU
required about 2 hours. For the full Chromosome 22 model (317,000 SNPs), we
parallelised the run across four RTX 2080 Ti cards, reducing wall-clock time to

approximately 2 hours.

Supplemental Results S1. Compression factors of PCA versus
ancestry-conditioned VAE

In this setup, the key difference is the inclusion of an additional explanatory variable,
denoted as y, which encodes the ancestry or breed of the subject. In practical terms,
this implies that before compressing a set of SNP arrays, we explicitly condition the
encoder based on ancestry or breed. Similarly, during the expansion step, we condition
the decoder using that same label. Following our experiments, we opted to continue
with the conventional VAE. This decision was based on the slightly worse compression
performance observed with C-VAE and its inability to effectively compress the African
(AFR) population. A comparison between VAE and C-VAE is provided in Supplemental
Table 3.

Compression factors of VAE versus C-VAE. The compression factors are computed as

% using test data. A compression ratio of 1 corresponds to the identity, values < 1 and > 1 correspond to
compression and expansion, respectively. Successful compression is marked in bold.|z| is the number of latent factors and «

stands for learning rate.

Models Populations
Type |z] « European East Asian | Native South African Oceanian West Asian
(EUR) (EAS) American Asian (AFR) (OCE) (WAS)
(AMR) (SAS)
VAE 2 107% | x0.68 x0.64 x0.76 x0.62 x0.53 x0.50 x0.67
C-VAE x0.57 x0.54 %x0.58 x0.54 x0.43 x0.46 x0.55
VAE 4 107% | x0.77 x0.69 x0.87 x0.68 x0.56 x0.58 x0.71
C-VAE x0.63 x0.58 x0.63 x0.58 x0.42 x0.51 x0.58
VAE 8 10~% | x1.00 x0.93 x1.17 x0.88 x0.63 %x0.68 x0.89
C-VAE x0.78 x0.71 x0.73 x0.69 x0.45 x0.56 x0.70
VAE 16 107* | x1.59 x1.39 x1.73 x1.32 x0.84 x1.01 x1.37
C-VAE x1.02 x0.77 x0.90 x0.88 x0.50 x0.65 x0.90
VAE 32 104 | x2.00 x1.75 x2.33 x1.69 x1.03 x1.27 x1.72
C-VAE x1.32 x1.10 x1.23 x1.12 x0.59 x0.85 x1.14
VAE 64 10~% | x2.04 xX1.82 xX2.27 x1.75 x1.16 x1.47 xX1.82
C-VAE x1.32 x1.20 x1.30 x1.18 x0.63 x0.88 x1.18
VAE 128 [ 104 | x1.54 x1.45 x1.61 x1.41 x1.06 x1.25 x1.43
C-VAE x1.27 x1.20 xX1.28 x1.19 x0.77 x1.01 x1.20
VAE 256 | 107% | x0.97 %x0.93 %x1.00 x0.93 x0.79 %x0.86 x0.93
C-VAE %x0.90 %x0.86 x0.91 x0.86 %x0.68 x0.78 x0.87
VAE 512 | 107% | x0.54 %x0.53 x0.55 x0.53 %x0.48 %x0.50 x0.53
C-VAE x0.52 x0.50 x0.52 x0.50 x0.44 x0.48 x0.51
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Supplemental Results S2. Synthetic genotypes enable accurate downstream
ancestry classification

To quantify the downstream utility of the genotypes generated by our VAE, we
performed a multiclass ancestry-classification benchmark in which synthetic data served
as training material and real founder genotypes provided an independent test set.
Genotypes were first projected onto their first 50 principal components using a PCA
transformation fitted to founder genotypes. We then train five standard classifiers
(logistic regression, random forest, Support Vector Machines (SVM), gradient boosting,
and Naive Bayes) on the PCA-transformed Wright-Fisher (WF) and VAE data (each
with 19,600 samples), and evaluate their performance on PCA-transformed real founder
genotypes. The results, shown in Supplemental Figure 1, demonstrate that classifiers
trained on VAE-simulated data achieve accuracy levels that are consistently close to
those trained on WF-augmented genotypes across a diverse set of model classes. This
supplemental result suggests that synthetic genotypes generated by our VAE approach

capture meaningful population structure and support downstream ancestry inference.

Mutliclass classifier performance

0.81
4
(]
2
5067
o
w
C
o
3 0.41
o
=1
(o}
1}
<
0.24
0.0 T T T - T
Logistic Random SVM Gradient Naive
Regression Forest Boosting Bayes
Train: WF Train: VAE

Supplemental Figure S1. Multiclass classifier comparison. Classification ac-
curacy on the first 50 principal components of real founder genotypes using models
trained on the first 50 principal components of a genotype dataset augmented by stan-
dard Wright-Fisher (WF) simulation, and on the first 50 principal components of a
VAE-generated genotype dataset (both with 19,600 samples). While classifiers trained
on Wright-Fisher data serve as a baseline, those trained on VAE-generated data achieve
comparable performance across a range of model classes, indicating the utility and
structural realism of the VAE simulations for downstream ancestry inference tasks.
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Supplemental Results S3. Comparison of GMMN and VAE for genotype 1o

simulation 1080

GMMN are architecturally distinct from VAEs, as well as their objective 1081
criterion—GMMNs rely on matching the statistical moments of real data in the 1082
artificial samples via Maximum Mean Discrepancy (MMD) minimization. Because 1083
training does not require a discriminator (as in GANSs) or an encoder (as in VAEs), 1084

GMMNs are in principle conceptually simpler and Perera et al. argue that this 1085
simplicity makes them easier to train. However, in practice, GMMNs with random 1086
features are computationally restrictive for high-dimensional genotype data. Their loss 10
requires computing random feature embeddings for each population and retaining large 10s
computational graphs for compute amortization. This leads to high GPU memory usage 109
and limited scalability. Consistent with the original GMMN paper, we therefore 1090

restricted training to 5,000 SNPs and used 10,000 training samples. This was sufficient 10

for comparison, but substantially smaller than the genome-wide scale of our VAE 1002
experiments. 1003
Folded Allele Frequency Spectrum Comparison

PCA on 5,000 SNPs by GMMN PCA on 5,000 SNPs by VAE

Number of SNPs

02 03
Folded Allele Frequency (0.0 to 0.5)
Per-SNP Entropy ECDF

Per-SNP Entropy (Mean)

ECDF

—— Real
~—— VAE
—— GMMN

Real  GMMN  VAE
08 10

BN European WM East Asian Native American South Asian African B Oceanian WM West Asian 0o

04 06
Per-SNP Entropy (bits)

Supplemental Figure S2. Comparison of real genotype data with simulated data generated by GMMN and
VAE models. (Left Panels) PCA projections of 5,000 SNPs (human Chromosome 22) generated by GMMN and VAE,
colored by population labels. Principal components were fitted on real 5,000 SNPs founder samples. (Top-right) Folded allele
frequency spectrum comparing real and simulations by GMMN and VAE. (Bottom-right) empirical CDF of per-SNP entropy
distributions, illustrating how the cumulative distribution of uncertainty in GMMN and VAE simulations tracks the real data.

We trained both GMMN and conditional VAE on the same subset. Results are 1004

shown in Supplemental Figure S2. Qualitatively, both methods recover broad ancestry 1ops
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structure; cluster locations are similar, with C-VAE clusters appearing smoother,
consistent with a Gaussian latent prior. The reduced SNP set naturally weakens
separation compared to genome-wide panels but still reveals clear population
stratification. In terms of folded AFS, both models recover the overall allele frequency
spectrum of the real founders, including the characteristic excess at low minor-allele
frequencies. We also computed the empirical CDF of per-SNP Bernoulli entropy and it
exposes subtle differences in the low-entropy tail. The C-VAE curve rises earlier than
real, indicating a slightly higher fraction of near-fixed sites (conservative bias; mild
underestimation of diversity at some loci). The GMMN curve is slightly below real at
the left tail and catches up in the mid-range, indicating fewer near-fixed sites and a
mild shift toward moderate entropies (slight overdispersion at some loci, injecting some
extra noise). Both models align well with real data from mid to high entropy, suggesting

overall diversity levels are well captured. In short, GMMN and C-VAE reproduce the

global entropy profile while differing in how aggressively they model low-entropy SNPs.
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PCA fitted to 839629 SNPs and 4894 samples

VAE trained on 839629 SNPs and 4894 samples
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Supplemental Figure S3.

Comparison of PCA and VAE projections of

African subpopulations. VAE trained genome-wide using 839,629 SNPs and no
admixture between subpopulations. The VAE clusters highlight clear separation of the
Mbuti and Biaka groups from the central African cluster, indicating that the model

effectively captures fine-grained population structure beyond what is observable through
PCA alone.

PCA fitted to 839629 SNPs and 4894 samples

VAE trained on 839629 SNPs and 4894 samples
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Supplemental Figure S4.

Component 1

Component 1

Comparison of PCA and VAE projections of Native

American-like subpopulations. Notably, the VAE produces more compact and
distinct clusters for each subpopulation, highlighting its capacity to capture subtle genetic
differences between subpopulations: Pima (yellow stars), Karitiana (blue triangles), and
Peruvian (green crosses).
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PCA on 2,000 SNPs PCA on 5,000 SNPs PCA on 10,000 SNPs PCA on 25,000 SNPs PCA on 50,000 SNPs PCA on 80,000 SNPs

2,048 test samples

VAE on 2,000 SNPs VAE on 5,000 SNPs VAE on 10,000 SNPs VAE on 25,000 SNPs VAE on 50,000 SNPs VAE on 80,000 SNPs

2,048 test samples

Il European WM East Asian Native American South Asian African B Oceanian M West Asian

Supplemental Figure S5. Comparison of PCA and VAE with a bottleneck in R% applied to varying lengths
of sequential SNP sequences. VAE models trained genome-wide using different subsets of SNPs (2,000; 5,000; 10,000;
25,000; 50,000; 80,000) with admixture between subpopulations.

PCA on 10,000 SNPs VAE on 10,000 SNPs (bottleneck of size 64) Parametric UMAP on 64 PCs (10,000 SNPs)

2,048 simulated test samples

PCA on 80,000 SNPs VAE on 80,000 SNPs (bottleneck of size 64) Parametric UMAP on 64 PCs (80,000 SNPs)

5,930 founder samples

I European N East Asian Native American South Asian African W Oceanian Il West Asian

Supplemental Figure S6. Comparison of PCA, VAE, and UMAP projections.
(a) First row: PCA, VAE, UMAP projections of 10,000 SNP positions of human
Chromosome 22 using simulated samples; (b) Second row: PCA, VAE, UMAP projections
of 80,000 SNP positions of human Chromosome 22 using (real) founder samples.
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PCA on 5,000 SNPs PCA on 10,000 SNPs PCA on 20,000 SNPs

11,772 samples

PCA on 40,000 SNPs

11,772 samples

11,772 samples

Il West Asian

I European I East Asian [ Native American South Asian African [ Oceanian

Supplemental Figure S7. Visual effect of LD on PCA projections. We use subsets of sequential SNPs from human
Chromosome 22 of sizes 5,000; 10,000; 20,000; 30,000; 40,000; 50,000; 60,000; 70,000, and 80,000 SNPs. The polarization effect

disappears when we use an effectively large subsample of sequential SNPs.
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PCA on 1,000 random SNPs

PCA on 1,000 sequential SNPs

11,772 samples

11,772 samples

I European B East Asian [ Native American South Asian

African B Oceanian M West Asian

Supplemental Figure S8. PCA on a subset of random and sequential SNPs.
The visual difference is due to LD structure.

Folded Allele Frequency Spectrum Comparison
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Supplemental Figure S9. Folded allele frequency spectrum, showing the pro-
portion of SNPs at each minor allele frequency for both, real and simulated data with a
C-VAE model trained genome-wide on 80,000 SNPs on human Chromosome 22. The
y-axis is shown on a logarithmic scale. The result suggests that our simulated data

reflects patterns found in real data.
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Sorted Q-matrix at generation #1
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Supplemental Figure S10. Comparison of how PCA and VAE represent admixed individuals across generations
of admixture. (Left) Color-coded ancestry estimates of simulated admixed samples; (Center and Right) Simulated admixed
samples are represented in black over the color-coded latent representation of single-ancestry individuals (see legend). (Center)
the same samples embedded via PCA, and (Right) their embedding using a VAE.
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