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Supplemental Methods

Overexpression of sXIST in the HEK-293T cell line and RNA sequencing

Cell cultures: HEK-293T cells (derived from female embryonic tissue) were cultured in DMEM
(Corning, 10-013-CV) with 10% FBS and 1% pen/strep solution (Corning, 30-002-Cl) in 5%
COs at 37°C.

Plasmids, lentivirus generation and infection: GFP (pLV-eGFP) was a gift from Pantelis Tsoulfas
(Addgene plasmid # 36083) and the full-length human XIST (G1A) was a gift from Jeanne
Lawrence (Addgene plasmid # 24690). We initially tried PCR amplification of the entire sXIST
RNA sequence for cloning and transfection, but we were unsuccessful. We then opted to clone
the last 3,323 base pair (bp) sequence of XIST exon 6 (ChrX:73,820,656-73,823,979(-)). The
PCR product was generated using G1A as template and a pair of primers (5’-
CTAGGGATCCACTACATGCCCTAGGATATAA-3’ and 5°-
CTAGACCGGTTTTTCAAAACAGTATATTT-3"). The product was subcloned into pLV-eGFP
vector. For ectopic GFP and GFP-sXIST expression, HEK-293T cells were transfected with 10ug
of pLV-eGFP and pLV-eGFP-sXIST lentiviral construct, 10ug packing plasmids (psPAX2,
pMD2.G, from Addgene plasmids #12259 and #12260), and 40ul jetPEI transfection regent
(Polyplus, 89129-916) according to the manufacturer’s instructions. Cells were replaced with
fresh DMEM medium after 24 hours post-transfection. Lentivirus-containing DMEM was
collected 48 hours post-transfection and filtered through a 0.45um filter. HEK-293T was cultured
with lentivirus-containing media and supplemented with 4pg/ml polybrene (Millipore Sigma,
H9268). Virus-containing media were replaced 24 hours post-infection with fresh DMEM, and
cells were cultured for an additional 24 hours. Virus-transfected cells were selected with Spug/mL

puromycin (Millipore Sigma, P8833) for 3 days.

RNA purification and bulk mRNA-seq library preparation: GFP and GFP-sXIST-expressed (XIST
OE) cells were collected directly into RLT Plus buffer (QIAGEN, 1053393), and total RNA was
isolated with the RNeasy Plus Mini Kit (QIAGEN, 74136) and RNase-free DNase I treatment
(QIAGEN, 79254) according to the manufacturer’s instructions. RNA quality was measured
using a Bioanalyzer and Agilent RNA 6000 Pico kit (Agilent, 5067-1513), and samples with



RNA integrity numbers (RIN) > 8 were used for library preparation. Libraries were constructed
from 100ng of total RNA using the Universal Plus mRNA-Seq with NuQuant® (Tecan, 0520-
AO01). Following the manufacturer’s instructions of mRNA elution, mRNA was subjected to
fragmentation at 94°C for 8 minutes. First strand, second-strand cDNA synthesis, end repair,
adapter ligation, and amplification were carried out following the manufacturer’s instructions.
The concentration and quality of the libraries were determined using Qubit (Invitrogen, Q32854),
Bioanalyzer and Agilent High Sensitivity DNA kit (Agilent, 5067-4626). The libraries were
sequenced at GENEWIZ (Azenta) on the Illumina NovaSeq platform, obtaining 150-nucleotide

paired-end reads.

Extended information on the collection of human scRNA-seq data:

Mehdiabadi et al. performed snRNA-seq on 10 healthy and diseased fetal and child hearts to
understand the fetal gene program in pediatric dilated cardiomyopathy (Mehdiabadi et al. 2022).
We downloaded the data from GEO (GSE185100) for the left ventricles of healthy children, aged
4 (male), 10 (female), and 14 (male) years-old. Sim ef al. conducted snRNA-seq to understand
age and sex-dependent changes in gene expression during development (Sim et al. 2021). From
GEO (GSE156707), we obtained data from left ventricular samples collected from a 35 year-old
female, a 41 year-old male, and a 42 year-old male (Sim et al. 2021). The third dataset was

downloaded from the Heart Cell Atlas (https://www.heartcellatlas.org/), which were generated

originally by Kanemaru ef al. from a variety of heart regions (apex, left atrium, left ventricle,
right atrium, right ventricle, and intraventricular septum) using both scRNA-seq and snRNA-seq
(Kanemaru et al. 2023). We used data from 14 heatlhy individuals (7 males and 7 females)
between the ages of 40 and 75 years-old.

Differential expression analysis, density plots, gene set envichment analysis, and
overrepresentation analysis

From DESeq?2, each gene had associated p values, adjusted p values, log>fold change values, etc.
We obtained the chromosomal location of each gene using biomaRt and further grouped genes
on X/Y Chromosomes to known PAR (Weng et al. 2016) and X escapee genes (Wainer Katsir

and Linial 2019). For cilia-related SPC genes in Figure 5, we chose to use genes within the


https://www.heartcellatlas.org/

“cilium movement” pathway to get the maximal number of cilia-related genes, which was 10.
After filtering for genes with normalized DESeq2 expression counts between 1 and the 99.9%
percentile value for our overexpression data and 100 for all other data (to eliminate outliers), we
created density plots based on log fold change (logFC) values from DESeq2 comparisons for
individual groups of genes. We also ranked genes by log>FC to run gene set enrichment analysis
(GSEA) using the clusterProfiler R package (Xu et al. 2024) (gseGO function). We followed the
same differential expression analysis procedure with bulk RNA-seq data. For overrepresentation
analysis of genes that were more strongly correlated with XIS7 in males, we used the ToppFun
(Chen et al. 2009) API. Due to the high number of redundant significant GO terms for genes with
stronger negative correlation with X7S7 in males, we selected 5 non-redundant, significant (FDR
<0.05) GO terms (eliminating all but one muscle system-related term) for plotting. For genes
with greater positive correlation with XZST in males, we simply selected the top 5 significant GO
terms. For both gene sets, we also selected the top 5 significant terms for categories “cytoband”

and “MicroRNA” for plotting.

Transcription factor regulation prediction using SCENIC

For the human heart and skeletal muscle data, we selected the glial cells and used the single-cell
regulatory network inference and clustering (SCENIC) R package (Aibar et al. 2017) to predict
transcription regulatory programs in the glial subpopulations. SCENIC uses GENIE3 (Huynh-
Thu et al. 2010) to infer co-expression modules between TFs and target genes followed by Rcis
Target (Aibar et al. 2017) to determine whether the TF binding motif is enriched among co-
expressed genes. AUCell (Aibar et al. 2017) is then used to create regulon activity scores for
each cell. After running SCENIC, we created a heatmap to show the regulon activity for all
regulons with a score > 0.01 for either myelinating or non-myelinating glia. We extracted
transcription factors predicted to regulate XIST and plotted their gene set activity using AUCell
(Aibar et al. 2017).



Supplemental Tables and Figures.
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Supplemental Figure S1: Cell type clustering and identification of integrated sc/snRNA-seq data from human
hearts. A) Original Seurat clusters B) top markers for each Seurat cluster used to create broad cell types in C. D) All
broad cell types along with identified non-myelinating Schwann cells, myelinating Schwann cells, and other glia. E)
clustered glial cell subtypes based on markers in F and G. H) finalized glial subtypes. I) Sample sex was confirmed
by plotting XIST and USP9Y expression by cell type.
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Supplemental Figure S2: Percentage of XIST+ cells across cell types from integrated heart and skeletal
muscle datasets. Percentages were calculated for each individual then presented as a boxplot.
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Supplemental Figure S3: Percentage of cells that are XIST+ by cell type across all human (A) and mouse (B)

datasets in CELLxGENE
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Supplemental Figure S4: XIST locus in UCSC genome browser (hg38). A) ChrX:73,790,905-73,854,216,
representing the entire XIST locus and part of 75X with FANTOMS and JASPAR tracks displayed. B)

ChrX:73,841,364-73,841,611, representing the glia-specific peak called from scATAC-seq heart data, with predicted

transcription factor (TF) binding sites from JASPAR. Note that only a fraction of predicted TF binding sites is

shown here.
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Supplemental Figure S5: SCENIC results from integrated heart and skeletal muscle datasets scRNA-seq
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male and female brain and nerve samples by strand. Tracks for each sample, strand, and tissue combination were
overlayed using IGV.



<chrX:73,790,905-73,854,216

:-:—:-:-:—:—:I:D{-:F_:_:-:I:_:_:I:I:-:-:
p223Z  pi22 p2zlZ pzls  pzll pll3 pIlzz plll qlz ql3Z q2ll  qzl31 qzz1 923 qz8 425 | qZ62 Q271 9z8

63 kb

73,800 kb 73,810 kb 73,820 kb 73,830 kb 73,840
| 1 | | | |

73,850 kb
il -] W

[N

TSIX XIST

Refsaq Selact

- 1000
Male Cardiac Atrium (Haart)
— 0 1

l
|
7|

-1
Famale Right Ventricle (Heart) N N i
J— L] [ —_— ew s _I

=TT E H o oo Cma
TR I s (]
ol b E [}
> — ‘. i i
T . R
£LEre e - I
b § b <m
—m Vo -
e b -
T Lo
| ' — ¥
- ' '
- Lo

Supplemental Figure S8: Long-read RNA sequencing transcripts over the XIST locus in male and female
heart samples. Two ENCODE long-read RNA-seq heart samples, one male and one female, showed a transcript
that extends from the 3’ end of XIST exon 1 through most of X7ST exon 6.
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Supplemental Figure S9: Mean log:FC values for a variety of comparisons from integrated heart (A) and
skeletal muscle (B) datasets by gene groups.
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Supplemental Figure S10: Density plots showing logFC values for Schwann vs all other cells. Higher logoFC
values indicate higher expression in Schwann cells while lower values indicate higher expression in all other cells. A
(left) density plots are from scRNA-seq skeletal muscle data while B (right) are from scRNA-seq integrated heart
data.
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Supplemental Figure S11: Assessment of pseudoautosomal region (PAR) gene expression differences between
male and female bulk RNA-seq GTEx data. A) Log(TPM+1) across all tissues and samples for each gene in PAR
1 and 2, as well as their three closest flanking genes. Significant differences between males and females are marked
by asterisks. If higher in males, the text for the gene is blue. If higher for females, the text is brown. B) Proportion of
tissues for which each gene in A was significantly higher in males (blue), females (brown), or neither (black). For
example, PLCXD1 was higher in males for about 80% of tested tissues whereas AMD1P2 showed no difference
between males and females for about 80% of tested tissues.
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Supplemental Figure S12: Gene expression correlation of 100 random genes with XIST and module scores for
integrated heart data. A) 100 random genes were correlated with XIST separately for males and females. For each
gene, their female vs male Pearson correlation values were plotted. An ellipse was fit around 99% of these points
and was used as the predicted correlation agreement range for Figure 4A. B) XIST vs DNAII/3 expression
correlation with correlation coefficients shown. DNAI1/3 were chosen due to their strong, positive correlations with
XIST in males. C) module score visualization across glial cell types using genes in the GO:0003351 gene set. D)
module score visualization across glial cell types using genes in the GO:0030048 gene set.
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Supplemental Figure S13: XIST OE gene ranks, pseudoautosomal region (PAR) gene expression, and cloned
sequence location. A) For each sample, XIST’s rank based on normalized expression level is shown. XIST
expression was in the top two for all three XIST OE samples. B) PAR gene expression scaled across rows, showing a
general decrease in these genes’ expression in the XIST OE group. C) The cloned XIST exon 6 sequence aligns to the
second half of exon 6 (Chr X:73,820,656-73,823,979). D) Box plot of Zinc finger (ZNF) gene expression
correlations with XIST from Morton’s neuroma data. E) ZNF genes with adjusted DESeq2 p-value < 0.05 and | fold
change | > 1.5.
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data.
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Supplemental Figure S15: Volcano plots following differential expression testing between cells from patients
with polyneuropathy and controls. XIST is labeled in each panel.
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Supplemental Figure S17: Determining myelinating and non-myelinating Schwann cells in mouse scRNA-seq
data. A-B) Schwann cells (SC) were selected and reclustered, followed by identification of non-myelinating
Schwann cells (nnSC) and myelinating Scwhann cells (mSC) using the same markers as those used for human heart
and skeletal muscle datasets. C) mSCs and nmSCs were already annotated, thus reclustering was not required.
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Supplemental Figure S18: XIST expression in mouse Schwann cells. A-C) UMAP and Xist/Foxol expression
from peripheral (GSE182098) and sciatic (GSE138577) nerves, grouped by Schwann cell type and split by predicted

sex (based on Y Chromosome expression).
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Supplemental Figure S19: Percentage of Xist+ cells across cell types from scRNA-seq mouse datasets.

Percentages were calculated for each individual then presented as a boxplot.
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developmental stage and pseudotime from snat.ethz.ch (bulk RNA-seq).
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