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Table. S1. Details of the Baseline Methods.

Omics Supervising Causal Prior GRN
Data Category Detection Integration
Grace . .
. Supervised Directed Integrated
GeneLink
scRNA
GENIE3
GRNBoost
. . None
scAl scRNA Unsupervised Undirected
CellOracle +
SupirFactor scATAC Integrated




Table. S2. The effect of the hyperparameters on the performance of PRISM-GRN.

Accuracy Precision  Recall F1 AUROC AUPRC
0.003 0.9907 0.5549 0.2384 0.3335 0.9891 0.4331
0.001 0.9906 0.5453 0.2198 0.3133 0.9895 0.4461

learning
rate 0.0005 0.9907 0.5499 0.2304 0.3248 0.9893 0.4443
0.0003 0.9907 0.5435 0.257 0.349 0.9893 0.4423
0.0001 0.9907 0.5575 0.2317 0.3274 0.989 0.4407
eioht 0.01 0.9906 0.5377 0.2649 0.355 0.9892 0.4409

w
g 0.001 0.9907 0.5435 0.257 0.349 0.9893 0.4423
decay

0.0001 0.9907 0.5414 0.2649 0.3558 0.9893 0.4417

0.1 0.9907 0.558 0.2171 0.3126 0.9893 0.4365
dropout 0.2 0.9906 0.5336 0.2636 0.3529 0.9894 0.4389
0.3 0.9907 0.5473 0.2729 0.3642 0.9893 0.4419

hidden 256 0.9907 0.5473 0.2729 0.3642 0.9893 0.4419
layer 128 0.9907 0.5634 0.2005 0.2958 0.9894 0.441
size 64 0.9909 0.5745 0.2278 0.3262 0.9893 0.4454

latent 256 0.9905 0.5421 0.158 0.2447 0.9893 0.4319
dimensi 128 0.9908 0.5729 0.2218 0.3198 0.9893 0.4501
on size 64 0.9909 0.5745 0.2278 0.3262 0.9893 0.4554

0.15 0.9909 0.5691 0.2543 0.3515 0.9892 0.4426
alpha 0.35 0.9909 0.5745 0.2278 0.3262 0.9893 0.4454
0.55 0.9908 0.5687 0.2145 0.3115 0.9893 0.445

Note: The selected default hyperparameters are highlighted with bold style.



Table. S3. Detailed Performance Metrics Comparison

Accuracy  Precision Recall F1 AUROC AUPRC
A549
PRISM-GRN 0.9907 0.5481 0.2537 0.3468 0.9893 0.4485
celloracle 0.9671 0.1367 0.4482 0.2095 0.7105 0.0716
scAl 0.9376 0.0028 0.0153 0.0047 0.4809 0.0096
SupirFactor 0.9896 0.0179 0.0013 0.0025 0.5533 0.0172
Grace 0.9812 0.2567 0.4934 0.3377 0.9770 0.2160
GeneLink 0.9899 0.4536 0.1720 0.2494 0.9833 0.3358
GENIE3 0.3933 0.0146 0.9256 0.0288 0.7411 0.0215
GRNBoost 0.9132 0.0227 0.1886 0.0405 0.5540 0.0117
3T3
PRISM-GRN 0.9955 0.7333 0.1199 0.2061 0.9963 0.5321
celloracle 0.9951 0.0000 0.0000 0.0000 0.5000 0.0049
scAl 0.9481 0.0025 0.0245 0.0046 0.4884 0.0048
SupirFactor 0.9946 0.0000 0.0000 0.0000 0.5543 0.0121
Grace 0.9906 0.3365 0.9591 0.4982 0.9955 0.3929
GeneLink 0.9948 0.4350 0.2371 0.3069 0.9783 0.2892
GENIE3 0.2932 0.0063 0.9292 0.0126 0.6670 0.0071
GRNBoost 0.8478 0.0077 0.2371 0.0149 0.5428 0.0054
GM12878
PRISM-GRN 0.9814 0.6306 0.1534 0.2468 0.9804 0.4652
celloracle 0.9783 0.2080 0.0320 0.0555 0.5148 0.0268
scAl 0.8841 0.0109 0.0538 0.0182 0.4774 0.0194
SupirFactor 0.9801 0.0000 0.0000 0.0000 0.6125 0.0667
Grace 0.9548 0.2563 0.6671 0.3703 0.9692 0.2901
GeneLink 0.9734 0.3685 0.4691 0.4128 0.9723 0.3714
GENIE3 0.4960 0.0353 0.9227 0.0679 0.8094 0.0661
GRNBoost 09114 0.0653 0.2594 0.1044 0.5930 0.0365
K562

PRISM-GRN 0.9751 0.6228 0.2053 0.3088 0.9688 0.4577
celloracle 0.9720 0.1596 0.0084 0.0160 0.5036 0.0283
scAl 0.9039 0.0106 0.0277 0.0154 0.4780 0.0266
SupirFactor 0.9728 0.3762 0.0076 0.0150 0.5611 0.0578
Grace 0.8855 0.1524 0.7082 0.2509 0.9186 0.1530
GeneLink 0.9567 0.3082 0.4807 0.3756 0.9466 0.2945
GENIE3 0.5385 0.0460 0.8129 0.0871 0.6955 0.0444
GRNBoost 0.9208 0.0439 0.0926 0.0595 0.5182 0.0284

Note: The best-performing results are clearly highlighted with bold style.



Table. S4. The weighted performance of PRISM-GRN and the baseline methods

Accuracy  Precision Recall F1 AUROC AUPRC
A549
PRISM-GRN 0.985 0.983 0.985 0.9836 0.9868 0.9923
Grace 0.8491 0.9825 0.8491 0.9028 0.9435 0.9824
GeneLink 0.8771 0.983 0.8771 0.9197 0.9527 0.9837
3T3
PRISM-GRN 0.9906 0.9914 0.9906 0.9909 0.9878 0.9947
Grace 0.983 0.9916 0.983 0.9864 0.9843 0.9933
GeneLink 0.9859 0.987 0.9859 0.9857 0.9865 0.9936
GM12878
PRISM-GRN 0.9705 0.968 0.9705 0.969 0.9831 0.9849
Grace 0.8932 0.9673 0.8932 0.9209 0.9597 0.9715
GeneLink 0.8477 0.968 0.8477 0.8918 0.954 0.9693
K562
PRISM-GRN 0.9599 0.9564 0.9599 0.9577 0.9743 0.9796
Grace 0.946 0.8949 0.946 0.9197 0.5069 0.8971

GeneLink 0.7479 0.9544 0.7479 0.8178 0.9358 0.9601

Note: The best-performing results are clearly highlighted with bold style.



Table. S5. The causality results evaluation of PRISM-GRN with SCENIC+

Dataset Method AUROC AUPRC Precision Recall F1
GRNBoost2 0.5128 0.0049 0.0063 0.1163 0.0120
GENIE3 0.6831 0.0074 0.0064 0.9114 0.0128
3T3 SCENIC+_GRNBoost2 0.5065 0.0119 0.1695 0.0136 0.0252
SCENIC+_GENIE3 0.5062 0.011 0.101 0.0136 0.024
PRISM-GRN 0.9944 0.4945 0.5232 0.6733 0.5888
GRNBoost2 0.5178 0.0103 0.0152 0.0997 0.0264
GENIE3 0.7335 0.0197 0.0144 0.9096 0.0284
A549 SCENIC+_GRNBoost2 0.5005 0.0197 0.3 0.001 0.002
SCENIC+_ GENIE3 0.517 0.0289 0.2842 0.0358 0.0637
PRISM-GRN 0.9938 0.6411 0.6948 0.4598 0.5534
GRNBoost2 0.5418 0.024 0.0538 0.1316 0.0764
GENIE3 0.7938 0.0586 0.0369 0.8929 0.0709
GM12878 SCENIC+_GRNBoost3 0.504 0.0422 0.3318 0.0087 0.0169
SCENIC+_GENIE3 0.5163 0.0506 0.3502 0.0352 0.064
PRISM-GRN 0.9903 0.6594 0.6684 0.5286 0.5903
GRNBoost2 0.5054 0.0279 0.0353 0.0492 0.0411
GENIE3 0.6801 0.0433 0.0464 0.772 0.0875
K562 SCENIC+_GRNBoost2 0.5018 0.0554 0.4317 0.0038 0.0076
SCENIC+_GENIE3 0.5004 0.0542 0.2763 0.001 0.002
PRISM-GRN 0.9848 0.6542 0.6617 0.5146 0.579




Table. S6. The cross validation with CRISPR datasets.

Genel Gene2 Predicted by Correlation Entrez ID
A549 (8/12)
PHFS§ NOPI10 - -0.122294 55505
CREBI SLC7A11 1 0.15292 23657
SMARCA4 JUN 1 -0.167887 3725
CTCF NOPI0 - 0.118317 55505
CRTC2 TOMM?20L 1 0.135353 387990
RAD21 NPYIR 1 0.2068 4886
BRD2 NCL 1 0.140719 4691
MAFK MXRAS - 0.179093 54587
EP300 NAMPT - 0.28904 10135
SP1 AHCY 1 0.209686 10567
CTCF DEDD? 1 0.222152 191
CRTC2 COX742 1 -0.15759 162989
GM 12878 (20/20)

BCLAF1 ZNF211 1 -0.1866 10520
SP1 BRD4 1 0.216028 23476
SPI1 MEF2C 1 0.242078 4208

BATF LIPTI 1 0.170407 51601
CBFB PTK2 1 -0.232641 5747
Yyl I0SEC3 1 0.142477 440073
MLLTI EED 1 0.213839 8726
E2F4 WDR74 1 0.197566 54663
MTA2 CTBPI 1 0.1753 1487
SP1 LIPTI 1 0.253064 51601
EP300 EED 1 0.337544 8726
NFKBI LIPTI 1 0.233006 51601
IRF4 LIPTI 1 0.266799 51601
IKZF1 ILK 1 -0.294995 3611
MEDI PTK2 1 -0.160038 5747
SMCI14 MSTI 1 -0.14236 4485
IKZF1 PAXS 1 0.271638 5079
CREBI MST1 1 -0.134592 4485
POU2F2 ETSI 1 0.166122 2113
RELB CTBPI 1 0.186326 1487
K562 (36/38)
CCNT2 BECNI 1 0.16882 8678
RUVBL2 CDC5L 1 0.168483 988
RBBPS FARS?2 1 0.220759 10667

ARIDIB ERI2 - -0.154383 112479

ERG NUPI153 1 0.145037 9972
SMARCA4 SSBP1 1 0.185447 6742
MAX ZNF830 1 -0.16264 91603
SP1 TFRC 1 0.231351 7037
ARID4B UBR4 1 0.164488 23352
L3MBTL?2 MGA 1 0.159437 23269
THAPI DHPS 1 0.142219 1725



L3MBTL2 MGA - 0.159437 23269
MAZ ZFYVEIL9 1 0.195723 84936
XRCCS ZRANB2 1 0.172594 9406
MAX RBMI14 1 0.162676 10432
CSDEI HNRNPHI 1 -0.165508 3187
RBM22 DDX46 1 0.274178 9879
RBFOX?2 PTBPI 1 -0.121711 5725
ETVI MTF2 1 0.193292 22823
SUZI2 MENI 1 0.28362 4221
BRD3 ZNF507 1 0.186243 22847
KDM4B C120rf57 1 0.209236 113246
SMAD4 E2F6 1 0.145843 1876
SUPTSH PRMTS 1 -0.141908 10419
7773 NSMCE? 1 0.159281 286053
SUPTSH PHB2 1 -0.19096 11331
IRFI BATF?2 1 0.149695 116071
ZNF395 ZNF143 1 -0.12098 7702
NR2C2 TARDBP 1 0.147273 23435
CXXC5 PSMD9 1 0.16243 5715
BCOR MENI 1 0.163396 4221
GTF2FI DDX46 1 0.233081 9879
MNT FOSLI 1 -0.2057 8061
KDMIA DNMTI 1 0.161553 1786
SMARCA4 BRDY 1 0.241961 65980
TBP GTF3ClI 1 0.164937 2975
BCOR DOTIL 1 0.173447 84444
CBX3 AGK 1 0.172277 55750
3T3 (12/13)
Ctcfl Thsd7a 1 0.168663 221981
Brd4 Acly 1 0.148405 47
Ctef Dedd? - -0.15759 162989
Smela Zeb2 1 0.162241 9839
Ctef Mersl 1 0.167373 10445
Smela Zeb2 1 0.162241 9839
Thp Glel 1 0.175389 2733
Setdla Incal 1 -0.167818 388324
Hefel Mersl 1 0.194753 10445
Mxil Pam 1 -0.159817 5066
Smela Zeb2 1 0.162241 9839
Smela Zeb2 1 0.162241 9839
Hefel Rpll2 1 -0.198794 6136

Note: The number of recovered edges and raw counts are given for each dataset.



Table. S7. The cross validation with TRRUST datasets.

Causality Label
TRRUST
Genel Gene2 by PRISM-
Evidence
GRN
CSRP1 CEBPB 2 14522018
SP1 EZR 0 19164283
IGFBP3 SP1 2 12200149
YYl PDIA6 0 1330541
POLD?2 CREBI 2 10978529
CTCF WT1 1 24534946
JUND GCLC 1 16054171
CEBPB CSRP1 1 14522018
PTGES CREBI 2 20688046
11431321;14654216;16391843;18458536;
Hi9 CTCF

19209620;19584898;20966046;24725430'

10



Table. S8. Top 25 Genes with the Highest Degree in the inferred GRN.

Degree in Degree in Betweenness in Betweenness in
GOneS  predicted GRN Prior GRN Predicted GRN Prior GRN
ATF4 1083 230 0.0401 0.0887
CEBPB 1059 230 0.0432 0.0921
MEDI2 1044 195 0.0363 0.0372
ETSI 1006 177 0.0320 0.0383
TRIM28 893 471 0.0141 0.2758
BCL6 850 179 0.0244 0.0328
CTCF 847 508 0.0325 0.3440
BRD4 834 540 0.0257 0.2927
NELFA 769 112 0.0211 0.0207
CXXCl1 326 85 0.0225 0.0152
REL 191 82 0.0314 0.0057
FOSL2 155 115 0.0231 0.0594
JUNB 58 81 0.0073 0.0076
IRF4 15 54 0.0055 0.0045
YYl 15 60 0.0036 0.0058
TP73 12 9 0.0028 0.0039
HLA-DRA 11 0 0.0020 0
T7C28 11 1 0.0023 0
ETV3L 11 0 0.0028 0
FADS3 11 1 0.0020 0
PRKCQ 11 5 0.0015 0.0027
HMGNI 11 19 0.0015 0.0002
EZH2 10 12 0.0024 0.0167
MYOF 10 0 0.0021 0.0000

NFATC2 10 43 0.0017 0.0155
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Table. S9. Top 10 Gene Regulatory Relationships with the Highest Probability.

Genel Gene2 Probability Supports
CTCF BCL6 0.972349 [1,2]
TRIM?28 TP73 0.96763 -
TRIM?28 REL 0.959507 -
TRIM?28 HOPX 0.958511 -
TRIM28 SLC11Al 0.955651 (3]
TRIM28 CEBPB 0.954477 (4]
TRIM28 SMAD3 0.952957 [5, 6]
TRIM28 CYPIBI-ASI 0.952921 -
TRIM28 ADGRG6 0.952217 [7]
BRD4 STON?2 0.952198 -

Note: " indicates that there are currently no studies directly proving the relationship.
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Table. S10. Top 10 Genes with the Highest Degree in the inferred GRNs.

PBMC_ID _IFNBI

PBMC_ID CTRL

Genes Degree BC Genes Degree BC
MBOATI 25.8719 0.0047 CREBBP 1398.837 0.2196
ADAP2 25.8652 0.0045 BATF 1381.977 0.2255
PSD3 24.893 0.0042 ETS1 1278.961 0.1659
CYP1BI-ASI 24.8664 0.0044 TRIM28 992.9819 0.0874
SLC44A1 23.8944 0.004 MEDI2 960.9083 0.0884
SMC2 23.8831 0.0042 CICF 956.8952 0.0843
MAPKAPK?2 23.8781 0.004 BRD4 918.0545 0.0711
TBC1D32 23.8509 0.0041 ATF4 627.038 0.036
ETV6 22.9016 0.0034 BCL6 340.2386 0.0094
JAK2 22.8998 0.0037 CEBPB 252.9377 0.0053

Note: Bold style indicates that the gene has evidence to be potentially relevant with IFN-f

stimulation.
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Table. S11. The computational efficacy comparison of PRISM-GRN and the baseline methods.

Peak CPU Peak GPU memory

Task Ti
asks ime (3) memory (Mb) (Mb)
A549
PRISM-  GRN Reconstruction 205.63 255.61 4767.23
GRN Causality Prediction 209.99 256.02 4792.92
GRN Reconstruction 436.92 193.44 10696.31
GRACE ) -
Causality Prediction 522.57 193.27 11624.14
. GRN Reconstruction 539.88 119.27 348.49
GeneLink ) e
Causality Prediction 366.37 103.74 716.75
3T3
PRISM-  GRN Reconstruction 138.71 136.38 2344.58
GRN Causality Prediction 137.29 136.04 2356.31
GRN Reconstruction 217.28 93.16 5232.44
GRACE ) -
Causality Prediction 250.78 92.79 5683.78
. GRN Reconstruction 257.13 57.56 196.35
GeneLink

Causality Prediction 187.56 49.58 436.13

14



Table. S12. The performance of PRISM-GRN on GRN Reconstruction with different sizes of
genomic window in Signac.

Dataset ~ Window(bp) Accuracy Precision Recall F1 AUROC  AUPRC
2000 0.9906 0.5375 0.2377 0.3297 0.9892 0.4458
A549 1500 0.9906 0.5378 0.241 0.3329 0.9892 0.4458
1000 0.9906 0.5353 0.2517 0.3424 0.9892 0.4456
2000 0.9817 0.6343 0.1892 0.2915 0.981 0.4746
GM12878 1500 0.9817 0.6383 0.1871 0.2894 0.981 0.4745
1000 0.9817 0.6293 0.1904 0.2924 0.981 0.4745
2000 0.9953 0.5379 0.1935 0.2846 0.9947 0.464
3T3 1500 0.9953 0.5308 0.188 0.2777 0.9947 0.464
1000 0.9953 0.5379 0.1935 0.2846 0.9947 0.464
2000 0.9756 0.6477 0.2171 0.3252 0.9713 0.488
K562 1500 0.9756 0.6509 0.2158 0.3241 0.9713 0.4881
1000 0.9756 0.6529 0.2118 0.3199 0.9713 0.4881
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Table. S13. The performance of PRISM-GRN on causality prediction with different sizes of
genomic window in Signac.

Dataset ~ Window(bp) Accuracy Precision Recall F1 AUROC  AUPRC
2000 0.9852 0.786 0.6267 0.6889 0.9917 0.7467

A549 1500 0.9852 0.7864 0.6298 0.6913 0.9917 0.7466
1000 0.9852 0.7927 0.6194 0.6855 0.9917 0.7468

2000 0.9711 0.7596 0.6704 0.7095 0.9875 0.7709

GM12878 1500 0.9712 0.7742 0.6422 0.696 0.9875 0.7706
1000 0.9712 0.7671 0.6558 0.7029 0.9875 0.7707

2000 0.9928 0.7844 0.6591 0.7109 0.9959 0.7553

3T3 1500 0.9928 0.7835 0.6573 0.7094 0.9959 0.7553
1000 0.9928 0.784 0.6583 0.7102 0.9959 0.7553

2000 0.9611 0.7868 0.6381 0.6968 0.9803 0.7623

K562 1500 0.9612 0.7748 0.6614 0.7091 0.9803 0.7628
1000 0.9613 0.7807 0.6518 0.7046 0.9803 0.7626

16



Figure S1
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Figure S1. The performance comparison of PRISM-GRN with the baseline methods on the
benchmark datasets with different peak-to-TSS distance thresholds (1500, 1000, 500) in ground
truth GRN reconstruction. The AUROC and AUPRC metrics are used to evaluate the performance,
and the results demonstrate that PRISM-GRN outperforms the baseline methods across all datasets.

17



Figure S2

PRISM-GRN B Grace B GeneLink

GM12878

= PRISM (AUC = 0.98) PRISM (AUC = 0.99) PRISM (AUC = 0.99)
Grace (AUC = 0.96) = Grace (AUC = 0.97) = Grace (AUC = 0.98)
= GeneLink (AUC = 0.95) = GeneLink (AUC = 097) = GeneLink (AUC = 097)
0.0 0.0
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
1.0 ——— 1.0 10 PRISM (AUC = 0.63)
= Grace (AUC = 0.35)
08 08 08 = GeneLink (AUC = 029)
0.6 0.6 0.6
0.4 04 04
0.2 02 0.2
PRISM (AUC = 1.00) = PRISM (AUC = 0.64)
= Grace (AUC = 1.00) = Grace (AUC = 0.30)
0.0 = GeneLink (AUC = 1.00) ~ 0.0 = GeneLink (AUC=0.26) 0.0 \
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
Recall Class 0 Class 1 Class 2
1.0 1o 1o
0.8 0.8 0.8
0.6 0.6 06
o] 04 04 04
s
&
2[02 02 - 0.2
= PRISM (AUC =0.97) PRISM (AUC = 0.98) PRISM (AUC = 0.98)
z == Grace (AUC = 0.51) = Grace (AUC = 0.51) = Grace (AUC = 0.51)
|00 = GeneLink (AUC =0.93) 0.0 = GeneLink (AUC =0.96) 0.0 = GeneLink (AUC = 0.95)
)
é 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
False Positive Rate
1.0 = 1.0 10

PRISM (AUC = 0.64)
= Grace (AUC=0.03)
= GeneLink (AUC = 0.35)

- PRISM (AUC = 0.66)
= Grace (AUC = 0.03)
= GeneLink (AUC = 0.30)

0.8 08 08

0.6 0.6

04 04

02 02

PRISM (AUC = 1.00)

~ Grace (AUC =095)

0.0 = GeneLink (AUC = 1.00) ~ 0.0 i i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 0.6 0.8 1.0

Recall Class 0 Class 1 Class 2

3T3

= PRISM (AUC = 0.99)
= Grace (AUC=0.98)

PRISM (AUC = 0.99)
= Grace (AUC =0.99)

- PRISM (AUC = 0.99)
= Grace (AUC =099)

= GeneLink (AUC =099) 0.0 = GeneLink (AUC =0.99) 0.0 = GeneLink (AUC=0.99)
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
10 =8 L0 PRISM (AUC = 0.49) 10 = PRISM (AUC = 046)
= Grace (AUC = 0.40) = Grace (AUC=025)

= GeneLink (AUC = 0.30) = GeneLink (AUC = 0.42)

0.8

0.6

0.4

0.2

PRISM (AUC = 1.00)
= Grace (AUC=1.00)
0.0 = GeneLink (AUC = 1.00)

; 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall Class 0 Class 1 Class 2

Figure S2. Receiver Operating Characteristic (ROC) curves and Precision-Recall (PRC) Curves for
each class in causality prediction on the rest three benchmark datasets, including GM12878, K562,
and 3T3 dataset, illustrating the detailed performance of PRISM-GRN and the baselines in causality

prediction.
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Figure S3
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Figure S3. A-B. The distribution of the Wasserstein distance across all genes between different
batches in the A549 and GM12878 datasets, respectively. C-E. The PCA plots of the
concatenated data of the batches from different datasets.
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Figure S4
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Figure S4. GO enrichment analysis results based on all genes and the genes in Cluster 0 of the A549
dataset. The results from the specific gene cluster reveal additional GO terms that are more relevant
to A549 cells, thereby enhancing the understanding of gene functions.
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Figure S5
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Figure S5. GO enrichment analysis results based on the genes from Cluster 1 to Cluster 9 of the
A549 dataset.
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Figure S6
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Figure S6. Density plots of betweenness centrality and degree for all genes calculated in the
predicted GRN of CD4 Naive cells. These plots illustrate the distribution of centrality and
connectivity metrics for genes within the network.
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Figure S7

GRN Reconstruction Causality Prediction
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Figure S7. Ablation study comparing the impact of perturbations added to different modalities. In
both GRN reconstruction and causality prediction tasks, introducing noise to either modality leads
to a decline in PRISM-GRN’s performance, highlighting the necessity of incorporating both
modalities for optimal results. When noise was introduced into the scRNA-seq data, the average
AUPRC across the four benchmark datasets reduced by about 14.54% in GRN reconstruction and
11.48% in causality prediction, for the scATAC-seq data, the perturbations led to a smaller average
decline of approximately 2.88% in GRN reconstruction and 5.40% in causality prediction.
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Figure S8
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Figure S8. Boxplots of PRISM-GRN’s performance under different random seeds. The results show
that PRISM-GRN achieves consistently stable performance across both GRN reconstruction and

causality prediction tasks, indicating robustness to training randomness.
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Figure S9
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Figure S9. Line plots of changes

Doublet Ratio

in AUPRC under varying proportions of doublet noise

introduced into the two modalities. PRISM-GRN demonstrates relatively stable performance

across different noise levels.
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Figure S10
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Figure S10. Line plots of changes in AUPRC under varying proportions of mis-annotation
noise label introduced into the two modalities. PRISM-GRN demonstrates its dependency on
the accuracy of the cell annotation of both modalities.
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Figure S11
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Figure S11. Line plots show the changes in AUPRC under varying proportions of incorrect
prior regulatory relationships. As expected, AUPRC generally decreases as the proportion of
incorrect priors increases. Introducing 30% noisy prior GRNSs resulted in an average decrease
of 2.76% in AUPRC across the four benchmark datasets, whereas performance remained
relatively stable when the noise level was below 0.1. This indicates that PRISM exhibits a
certain degree of robustness to prior knowledge noise.
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Content S1. Data preprocessing pipeline
ChIP-seq Data

For ChIP-seq data derived from ChIP-Atlas, we used the bedtools [8] with the Linux command
“bedtools window -a $A Bed -b $B_Bed -w $width” to process the raw sequencing data. $A_ Bed
is a cell-type-specific TF ChIP-seq BED file, $B_Bed is a BED file containing the transcription start
sites (TSS) of all genes, and the $width specifies the distance range from the transcription start site
(TSS) of the gene within which the transcription factor (TF) binding is considered significant, which
is set as 2,000. Accordingly, we can obtain the prior Gene Regulatory Network (GRN) G, along
with the TF set and the target gene set, denoted as G(TF) and G(ChIP).
scRNA-seq Data

For scRNA-seq data, following the standard pipeline using Scanpy [9], the cell-by-gene count
matrix was performed with the quality control to filter out the low-quality cells and genes. First, the
number of detected genes per cell is calculated, where cells with minimal gene expression are
removed. Next, the total UMI count per cell is computed to assess sequencing depth, and cells with
low UMI counts are excluded. Additionally, the percentage of mitochondrial gene expression is
calculated, the cells whose mitochondrial gene expression exceeds 5% are then removed. Lastly,
filtering criteria are applied to retain cells that meet specific thresholds for the minimum and
maximum number of detected genes (150 and 5,000, respectively) and the minimum UMI count
(100). The cells after quality control are denoted as C(ScRNA).

Based on the quality-controlled cell-by-gene matrix, the top 3,000 highly variable genes (HVGs)
are detected using function scanpy.pp.highly variable genes with default parameters. Specifically,
it normalizes the dispersions based on the gene expression values for each gene, and sorts them to
select the HVGs, denoted as G(HVG). We finally performed the log transformation on the filtered
cell-by-gene count matrix to obtain the expression profile matrix.
scATAC-seq Data

For scATAC-seq data, the low-quality cells with fewer than 150 fragments or more than 5,000
fragments are filtered out, yielding the high-quality cells denoted as C(scATAC). Signac [10] was
subsequently used to transform the cell-by-peak matrix to the cell-by-gene chromatin accessibility
score matrix, with the CreateGeneActivityMatrix() function (default settings). Notably, the
upstream and downstream parameters that define the genomic regions around each gene were also
set as 2,000, consistent with the standard used in ChIP-seq data preprocessing.

Input Matrix Generation

For paired datasets, the final cells are the intersection of the quality-controlled cells from scRNA-
seq data and scATAC-seq data, namely, C(scRNA) N C(scATAC). For unpaired dataset, the final
cells correspond to their quality control results. The final genes are the union of TFs derived from
ChIP-seq data, and the intersection of the target genes and the HVGs, namely, G(TF)U

(G(ChIP) n G(HVG)), covering the known TFs and the significant genes among the cell-type-
specific dataset. According to the final cells and final genes, the input gene expression matrix E €

RM*N RM*N where M is the number of final

, and the chromatin accessibility score matrix R €
genes and N is the number of final cells, can be generated by trimming the normalized cell-by-

gene expression matrix and the cell-by-gene chromatin accessibility score matrix.
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Content S2. Detailed descriptions of The performance metrics

We firstly evaluate the performance of PRISM-GRN and the baseline methods based on Area
Under the Receiver Operating Characteristic (AUROC) and Area Under Precision-Recall Curve
(AUPRC).

Accuracy, Precision, Recall, F1 are also used to show more explicit comparisons in some

evaluation experiments.

Accuracy = % , ()

Precision = % , 2)

Recall = % , 3)

F1 = Z*pre'ci.sion*recall (4)
precision+recall

where TP, FP, TN, FN represents the true predicted gene regulatory interactions, false predicted
gene regulatory interactions, true predicted non-interacted genes, and false predicted non-interacted
genes, respectively. Notably, the macro averaging was used in all evaluations.

The betweenness centrality used to identify regulators in GRNs can be defined as follows:

GklD)
BCi=%i+j=k Ugj(j_k)l , (5)

where BC; is the betweenness centrality of gene i, o(j, k) is the total number of shortest paths
between gene j and gene k, and o(j, k| i) is the number of regulatory paths passing through
node gene .
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Content S3. The batch effect analysis when using unpaired scATAC-seq data

In fact, PRISM-GRN does not directly utilize raw peak-resolution scATAC-seq data. Instead, we
preprocess the data using the Signac toolkit, which transforms the high-resolution peak matrix into
gene-resolution gene accessibility scores. While this transformation may result in a certain degree
of resolution loss of the fine-grained chromatin accessibility signal, it serves two important purposes:
(1) it facilitates alignment with the sScRNA-seq gene expression data, and (2) it mitigates certain
batch-specific artifacts associated with peak calling and sequencing depth variability. By
aggregating signal to the gene level, this preprocessing step acts as a form of normalization that
smooths over some of the noise and variability across batches.

To further illustrate this, we provide examples from two datasets used in this study: A549 and
GM12878. Specifically, the A549 dataset consists of two independently sequenced scATAC-seq
datasets from separate experimental batches, while the GM 12878 dataset includes two sequencing
replicates derived from the same experimental protocol. For both datasets, we applied the Signac
pipeline to convert raw peak-level scATAC-seq data into gene-level gene accessibility scores.

We used the Wasserstein distance to assess the similarity between the distribution of the
transformed gene accessibility score across different batches. For each gene, we computed the
Wasserstein distance between its gene accessibility score distributions in two batches. This yielded
a gene-level measure of distributional divergence. Specifically, let x = [xq, X3, ..., Xy] and y =
[V1,¥2, -, Y] denote the gene accessibility score vectors of a given gene across M cells in two
batches. The Wasserstein distance between these two distributions is defined as:

1
W(x,y) = EZ{'VLJX(Q -y (6)

where x(;y and y; are the i-th elements of the sorted vectors x and y, respectively. The lower
the value of W (x,y) is, the greater the similarity between the distributions of x and y.

We then aggregated these values across all genes and visualized the global distribution of
Wasserstein distances using a density plot. As shown in Supplemental Figures S6, the Wasserstein
distances between gene accessibility scores across different batches for both A549 and GM 12878
remain at relatively low levels, indicating high distributional similarity of gene accessibility scores
across batches within the same dataset. Notably, the GM12878 dataset, which consists of two
replicates from the same sequencing experiment, exhibits even lower Wasserstein distances
compared to A549, whose two batches originate from independent sequencing experiments. This
further supports the validity of using the Wasserstein distance as a quantitative measure of similarity
across batches.

Furthermore, we extracted the gene score matrices from two batches of the A549 dataset and two
batches of the GM 12878 dataset, and also concatenated one batch from A549 with one batch from
GM12878. PCA was performed separately on these three data groups. As shown in the figure, the
two batches from the same dataset exhibit highly consistent distributions in the PCA space,
indicating minimal batch effects. In contrast, the concatenated data from different cell lines (A549
and GM12878) show clearly distinct distributions, reflecting substantial differences in their gene
accessibility score profiles.

Although PRISM-GRN itself does not incorporate explicit batch correction modules, the
transformation by Signac and PRISM-GRN’s Bayesian variational framework and integration at the
gene level allow it to model shared regulatory patterns in a way that is relatively robust to residual
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batch effects.
Content S4. The ablation experiments

PRISM-GRN is built upon a probabilistic framework that explicitly models the generation of
gene expression as a downstream consequence of the expression levels of transcription factors (TFs)
targeting it and the accessibility of its chromatin through the cell-type-specific GRN. As such, both
modalities, expression (from scRNA-seq) and cis-regulatory accessibility (from scATAC-seq),
along with the prior GRNs, play essential roles in the inference process. Removing one of the
modalities would undermine the biological interpretability of the inferred regulatory relationships,
as the model would no longer reflect the hierarchical nature of transcriptional regulation.

To empirically assess the impact of each modality, we conducted ablation experiments using
structured noise injection into either the sScRNA-seq or scATAC-seq data across several benchmark
datasets. These experiments serve to approximate modality dropout while preserving the model’s
structure. Specifically, for each selected modality data, we added values drawn from a truncated
normal distribution " *(0,0.12) to all features, ensuring the perturbation is strictly non-negative.
The performance was evaluated on both tasks of GRN reconstruction and causality prediction across
the four benchmark datasets by repeating each ablation setting with six independent random seeds
to ensure statistical robustness.

As shown in Supplemental Figure S7, the values of AUPRC consistently decreased as noise
intensity increased, confirming that perturbations in either modality degrade model performance.
Notably, we observed that the degradation was more severe when noise was introduced into the
scRNA-seq data, suggesting that expression information plays a more dominant role in PRISM-
GRN’s inference pipeline. In contrast, while noise in the scATAC-seq data also impaired
performance, its effect was less pronounced.

This asymmetry likely stems from the preprocessing approach applied to the scATAC-seq data,
where we employ Signac to convert high-resolution peak signals into gene-level chromatin
accessibility scores. Although this facilitates alignment between chromatin features and gene
expression, it may introduce a degree of information loss due to the smoothing and peak-to-gene
linkage steps. Consequently, the contribution of the scATAC-seq modality, while biologically
meaningful, its contribution may appear diminished relative to scRNA-derived features in PRISM-
GRN’s current implementation.
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Content SS. The sensitivity analysis on GRN preprocessing variation

We used Signac to preprocess the scATAC-seq data. In this manuscript, no additional
normalization was applied beyond the default procedures in Signac, which we used to convert peak-
level signals into gene-level chromatin accessibility scores. This transformation enables alignment
between modalities and helps mitigate batch effects to some extent; however, it leads to information
loss due to resolution reduction and score aggregation.

Moreover, the peak-to-gene linkage in Signac requires setting a genomic window around the gene
body to associate nearby peaks with each gene. In our default setting, we used a +2000 bp window
(2000 bp upstream and downstream of the gene body). To evaluate the robustness of our results to
this parameter, we conducted additional experiments using alternative window sizes of 1000 bp,
+1500 bp, and £20000 bp. Specifically, we performed PRISM-GRN on the four benchmark datasets
across the three alternative window sizes in both tasks of GRN reconstruction and causality
prediction. As shown in Supplemental Table S12 and Table S13, while performance fluctuates
slightly with different window sizes, the overall trends in GRN reconstruction and causality
prediction remain consistent. This suggests that PRISM-GRN is relatively robust to the specific
choice of peak-to-gene linkage parameters.
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Content S6. The sensitivity analysis on cell annotation noise

We first evaluated the impact of doublets. Following the simulation strategy adopted by scIBD
[11], we constructed datasets with varying doublet ratios ranging from 0.05 to 0.2 (with an interval
of 0.05). Because we used cell-type-specific data as the benchmark, all simulated doublets were
homotypic. For scRNA-seq data, each doublet was generated by randomly selecting two cells and
averaging their gene expression profiles. In contrast, for scATAC-seq data, doublets were
constructed by taking the union (element-wise maximum) of chromatin accessibility profiles from
two randomly selected cells. As illustrated in Supplemental Figure S9, the performance of PRISM-
GRN remains robust across different doublet ratios, demonstrating its resilience to homotypic
doublet contamination.

Subsequently, to further assess the robustness of our method under imperfect cell annotations, we
simulated mislabeled or noisy data by injecting perturbations into both scRNA-seq expression and
scATAC-seq gene accessibility profiles. Instead of modifying the label space directly, we perturbed
the input features to reflect biologically plausible annotation errors such as expression shifts or
experimental noise. Similarly, we randomly selected a prosportion of cells (ranging from 0.05 to 0.2
with an interval of 0.05) and added noises. For each selected cell, we added values drawn from a
truncated normal distribution V"*(0,0.1%) to all features, ensuring the perturbation is strictly non-
negative.

As shown in Supplemental Figure S10, PRISM-GRN exhibits a gradual performance drop as
noise increases, indicating its sensitivity to incorrect annotations in both modalities. Notably, in
PRISM-GRN, the performance degradation is more pronounced when noise was injected into the
scRNA-seq data compared to scATAC-seq, suggesting that accurate cell annotation for
transcriptomic data plays a more critical role in model performance. In addition, although the use
of Signac to convert peak-resolution scATAC-seq data into gene accessibility scores facilitates data
alignment and mitigates batch effects, it may lead to a loss of regulatory information due to the
transformation.
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Content S7. The sensitivity analysis on prior GRN noise

To assess PRISM-GRN’s robustness to imperfect prior knowledge, we conducted a sensitivity
analysis by introducing increasing levels of noise into the prior GRNs. Specifically, to simulate the
effect of noisy biological priors, we perturbed the training set by randomly introducing incorrect
TF-target regulatory edges at five different noise levels: 1%, 5%, 10%, 20%, and 30% of the original
number of positive edges.

As shown in Supplemental Figure S11, AUPRC exhibits an overall downward trend as the level
of noise in the prior GRNs increases, reflecting PRISM-GRN’s inherent dependence on high-quality
prior networks. However, when the noise ratio remains below 10%, the performance of PRISM-
GRN stays relatively stable. This indicates that the variational inference framework underlying
PRISM-GRN is capable of effectively absorbing moderate levels of noise, thus demonstrating its
robustness and capacity to denoise imperfect biological priors to some extent.
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