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Table. S1. Details of the Baseline Methods. 

 

 Omics 
Data 

Supervising 
Category 

Causal  
Detection 

Prior GRN 
Integration 

Grace 

scRNA 
Supervised Directed Integrated 

GeneLink 
GENIE3 

Unsupervised Undirected 
None 

GRNBoost 
scAI scRNA  

+ 
scATAC 

CellOracle 
SupirFactor Integrated 
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Table. S2. The effect of the hyperparameters on the performance of PRISM-GRN. 
 

 
Accuracy Precision Recall F1 AUROC AUPRC 

learning 
rate 

0.003 0.9907 0.5549 0.2384 0.3335 0.9891 0.4331 
0.001 0.9906 0.5453 0.2198 0.3133 0.9895 0.4461 
0.0005 0.9907 0.5499 0.2304 0.3248 0.9893 0.4443 
0.0003 0.9907 0.5435 0.257 0.349 0.9893 0.4423 
0.0001 0.9907 0.5575 0.2317 0.3274 0.989 0.4407 

weight 
decay 

0.01 0.9906 0.5377 0.2649 0.355 0.9892 0.4409 
0.001 0.9907 0.5435 0.257 0.349 0.9893 0.4423 
0.0001 0.9907 0.5414 0.2649 0.3558 0.9893 0.4417 

dropout 
0.1 0.9907 0.558 0.2171 0.3126 0.9893 0.4365 
0.2 0.9906 0.5336 0.2636 0.3529 0.9894 0.4389 
0.3 0.9907 0.5473 0.2729 0.3642 0.9893 0.4419 

hidden 
layer 
size 

256 0.9907 0.5473 0.2729 0.3642 0.9893 0.4419 
128 0.9907 0.5634 0.2005 0.2958 0.9894 0.441 
64 0.9909 0.5745 0.2278 0.3262 0.9893 0.4454 

latent 
dimensi
on size 

256 0.9905 0.5421 0.158 0.2447 0.9893 0.4319 
128 0.9908 0.5729 0.2218 0.3198 0.9893 0.4501 
64 0.9909 0.5745 0.2278 0.3262 0.9893 0.4554 

alpha 
0.15 0.9909 0.5691 0.2543 0.3515 0.9892 0.4426 
0.35 0.9909 0.5745 0.2278 0.3262 0.9893 0.4454 
0.55 0.9908 0.5687 0.2145 0.3115 0.9893 0.445 

Note: The selected default hyperparameters are highlighted with bold style.  
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Table. S3. Detailed Performance Metrics Comparison  

 Accuracy Precision Recall F1 AUROC AUPRC 
A549 

PRISM-GRN 0.9907 0.5481 0.2537 0.3468 0.9893 0.4485 
celloracle 0.9671 0.1367 0.4482 0.2095 0.7105 0.0716 

scAI 0.9376 0.0028 0.0153 0.0047 0.4809 0.0096 
SupirFactor 0.9896 0.0179 0.0013 0.0025 0.5533 0.0172 

Grace 0.9812 0.2567 0.4934 0.3377 0.9770 0.2160 
GeneLink 0.9899 0.4536 0.1720 0.2494 0.9833 0.3358 
GENIE3 0.3933 0.0146 0.9256 0.0288 0.7411 0.0215 

GRNBoost 0.9132 0.0227 0.1886 0.0405 0.5540 0.0117 
3T3 

PRISM-GRN 0.9955 0.7333 0.1199 0.2061 0.9963 0.5321 
celloracle 0.9951 0.0000 0.0000 0.0000 0.5000 0.0049 

scAI 0.9481 0.0025 0.0245 0.0046 0.4884 0.0048 
SupirFactor 0.9946 0.0000 0.0000 0.0000 0.5543 0.0121 

Grace 0.9906 0.3365 0.9591 0.4982 0.9955 0.3929 
GeneLink 0.9948 0.4350 0.2371 0.3069 0.9783 0.2892 
GENIE3 0.2932 0.0063 0.9292 0.0126 0.6670 0.0071 

GRNBoost 0.8478 0.0077 0.2371 0.0149 0.5428 0.0054 
GM12878 

PRISM-GRN 0.9814 0.6306 0.1534 0.2468 0.9804 0.4652 
celloracle 0.9783 0.2080 0.0320 0.0555 0.5148 0.0268 

scAI 0.8841 0.0109 0.0538 0.0182 0.4774 0.0194 
SupirFactor 0.9801 0.0000 0.0000 0.0000 0.6125 0.0667 

Grace 0.9548 0.2563 0.6671 0.3703 0.9692 0.2901 
GeneLink 0.9734 0.3685 0.4691 0.4128 0.9723 0.3714 
GENIE3 0.4960 0.0353 0.9227 0.0679 0.8094 0.0661 

GRNBoost 0.9114 0.0653 0.2594 0.1044 0.5930 0.0365 
K562 

PRISM-GRN 0.9751 0.6228 0.2053 0.3088 0.9688 0.4577 
celloracle 0.9720 0.1596 0.0084 0.0160 0.5036 0.0283 

scAI 0.9039 0.0106 0.0277 0.0154 0.4780 0.0266 
SupirFactor 0.9728 0.3762 0.0076 0.0150 0.5611 0.0578 

Grace 0.8855 0.1524 0.7082 0.2509 0.9186 0.1530 
GeneLink 0.9567 0.3082 0.4807 0.3756 0.9466 0.2945 
GENIE3 0.5385 0.0460 0.8129 0.0871 0.6955 0.0444 

GRNBoost 0.9208 0.0439 0.0926 0.0595 0.5182 0.0284 
Note: The best-performing results are clearly highlighted with bold style. 
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Table. S4. The weighted performance of PRISM-GRN and the baseline methods  

 Accuracy Precision Recall F1 AUROC AUPRC 

 A549 
PRISM-GRN 0.985 0.983 0.985 0.9836 0.9868 0.9923 

Grace 0.8491 0.9825 0.8491 0.9028 0.9435 0.9824 
GeneLink 0.8771 0.983 0.8771 0.9197 0.9527 0.9837 

 3T3 
PRISM-GRN 0.9906 0.9914 0.9906 0.9909 0.9878 0.9947 

Grace 0.983 0.9916 0.983 0.9864 0.9843 0.9933 
GeneLink 0.9859 0.987 0.9859 0.9857 0.9865 0.9936 

 GM12878 
PRISM-GRN 0.9705 0.968 0.9705 0.969 0.9831 0.9849 

Grace 0.8932 0.9673 0.8932 0.9209 0.9597 0.9715 
GeneLink 0.8477 0.968 0.8477 0.8918 0.954 0.9693 

 K562 
PRISM-GRN 0.9599 0.9564 0.9599 0.9577 0.9743 0.9796 

Grace 0.946 0.8949 0.946 0.9197 0.5069 0.8971 
GeneLink 0.7479 0.9544 0.7479 0.8178 0.9358 0.9601 

Note: The best-performing results are clearly highlighted with bold style. 
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Table. S5. The causality results evaluation of PRISM-GRN with SCENIC+ 
Dataset Method AUROC AUPRC Precision Recall F1 

3T3 

GRNBoost2 0.5128 0.0049 0.0063 0.1163 0.0120 

GENIE3 0.6831 0.0074 0.0064 0.9114 0.0128 

SCENIC+_GRNBoost2 0.5065 0.0119 0.1695 0.0136 0.0252 

SCENIC+_GENIE3 0.5062 0.011 0.101 0.0136 0.024 

PRISM-GRN 0.9944 0.4945 0.5232 0.6733 0.5888 

A549 

GRNBoost2 0.5178 0.0103 0.0152 0.0997 0.0264 

GENIE3 0.7335 0.0197 0.0144 0.9096 0.0284 

SCENIC+_GRNBoost2 0.5005 0.0197 0.3 0.001 0.002 

SCENIC+_GENIE3 0.517 0.0289 0.2842 0.0358 0.0637 

PRISM-GRN 0.9938 0.6411 0.6948 0.4598 0.5534 

GM12878 

GRNBoost2 0.5418 0.024 0.0538 0.1316 0.0764 

GENIE3 0.7938 0.0586 0.0369 0.8929 0.0709 

SCENIC+_GRNBoost3 0.504 0.0422 0.3318 0.0087 0.0169 

SCENIC+_GENIE3 0.5163 0.0506 0.3502 0.0352 0.064 

PRISM-GRN 0.9903 0.6594 0.6684 0.5286 0.5903 

K562 

GRNBoost2 0.5054 0.0279 0.0353 0.0492 0.0411 

GENIE3 0.6801 0.0433 0.0464 0.772 0.0875 

SCENIC+_GRNBoost2 0.5018 0.0554 0.4317 0.0038 0.0076 

SCENIC+_GENIE3 0.5004 0.0542 0.2763 0.001 0.002 

PRISM-GRN 0.9848 0.6542 0.6617 0.5146 0.579 
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Table. S6. The cross validation with CRISPR datasets. 
Gene1 Gene2 Predicted by Correlation Entrez ID 

A549 (8/12) 
PHF8 NOP10 - -0.122294 55505 

CREB1 SLC7A11 1 0.15292 23657 
SMARCA4 JUN 1 -0.167887 3725 

CTCF NOP10 - 0.118317 55505 
CRTC2 TOMM20L 1 0.135353 387990 
RAD21 NPY1R 1 0.2068 4886 
BRD2 NCL 1 0.140719 4691 
MAFK MXRA8 - 0.179093 54587 
EP300 NAMPT - 0.28904 10135 

SP1 AHCY 1 0.209686 10567 
CTCF DEDD2 1 0.222152 191 

CRTC2 COX7A2 1 -0.15759 162989 
GM12878 (20/20) 

BCLAF1 ZNF211 1 -0.1866 10520 
SP1 BRD4 1 0.216028 23476 
SPI1 MEF2C 1 0.242078 4208 
BATF LIPT1 1 0.170407 51601 
CBFB PTK2 1 -0.232641 5747 
YY1 IQSEC3 1 0.142477 440073 

MLLT1 EED 1 0.213839 8726 
E2F4 WDR74 1 0.197566 54663 
MTA2 CTBP1 1 0.1753 1487 
SP1 LIPT1 1 0.253064 51601 

EP300 EED 1 0.337544 8726 
NFKB1 LIPT1 1 0.233006 51601 

IRF4 LIPT1 1 0.266799 51601 
IKZF1 ILK 1 -0.294995 3611 
MED1 PTK2 1 -0.160038 5747 
SMC1A MST1 1 -0.14236 4485 
IKZF1 PAX5 1 0.271638 5079 
CREB1 MST1 1 -0.134592 4485 

POU2F2 ETS1 1 0.166122 2113 
RELB CTBP1 1 0.186326 1487 

K562 (36/38) 
CCNT2 BECN1 1 0.16882 8678 

RUVBL2 CDC5L 1 0.168483 988 
RBBP5 FARS2 1 0.220759 10667 
ARID1B ERI2 - -0.154383 112479 

ERG NUP153 1 0.145037 9972 
SMARCA4 SSBP1 1 0.185447 6742 

MAX ZNF830 1 -0.16264 91603 
SP1 TFRC 1 0.231351 7037 

ARID4B UBR4 1 0.164488 23352 
L3MBTL2 MGA 1 0.159437 23269 

THAP1 DHPS 1 0.142219 1725 
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L3MBTL2 MGA - 0.159437 23269 
MAZ ZFYVE19 1 0.195723 84936 

XRCC5 ZRANB2 1 0.172594 9406 
MAX RBM14 1 0.162676 10432 

CSDE1 HNRNPH1 1 -0.165508 3187 
RBM22 DDX46 1 0.274178 9879 

RBFOX2 PTBP1 1 -0.121711 5725 
ETV1 MTF2 1 0.193292 22823 
SUZ12 MEN1 1 0.28362 4221 
BRD3 ZNF507 1 0.186243 22847 

KDM4B C12orf57 1 0.209236 113246 
SMAD4 E2F6 1 0.145843 1876 
SUPT5H PRMT5 1 -0.141908 10419 

ZZZ3 NSMCE2 1 0.159281 286053 
SUPT5H PHB2 1 -0.19096 11331 

IRF1 BATF2 1 0.149695 116071 
ZNF395 ZNF143 1 -0.12098 7702 
NR2C2 TARDBP 1 0.147273 23435 
CXXC5 PSMD9 1 0.16243 5715 
BCOR MEN1 1 0.163396 4221 

GTF2F1 DDX46 1 0.233081 9879 
MNT FOSL1 1 -0.2057 8061 

KDM1A DNMT1 1 0.161553 1786 
SMARCA4 BRD9 1 0.241961 65980 

TBP GTF3C1 1 0.164937 2975 
BCOR DOT1L 1 0.173447 84444 
CBX3 AGK 1 0.172277 55750 

3T3 (12/13) 
Ctcfl Thsd7a 1 0.168663 221981 
Brd4 Acly 1 0.148405 47 
Ctcf Dedd2 - -0.15759 162989 

Smc1a Zeb2 1 0.162241 9839 
Ctcf Mcrs1 1 0.167373 10445 

Smc1a Zeb2 1 0.162241 9839 
Tbp Gle1 1 0.175389 2733 

Setd1a Inca1 1 -0.167818 388324 
Hcfc1 Mcrs1 1 0.194753 10445 
Mxi1 Pam 1 -0.159817 5066 

Smc1a Zeb2 1 0.162241 9839 
Smc1a Zeb2 1 0.162241 9839 
Hcfc1 Rpl12 1 -0.198794 6136 

Note: The number of recovered edges and raw counts are given for each dataset. 
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Table. S7. The cross validation with TRRUST datasets. 

Gene1 Gene2 
Causality Label 

by PRISM-
GRN 

TRRUST 
Evidence 

CSRP1 CEBPB 2 14522018 
SP1 EZR 0 19164283 

IGFBP3 SP1 2 12200149 
YY1 PDIA6 0 1330541 

POLD2 CREB1 2 10978529 
CTCF WT1 1 24534946 
JUND GCLC 1 16054171 

CEBPB CSRP1 1 14522018 
PTGES CREB1 2 20688046 

H19 CTCF 2 
11431321;14654216;16391843;18458536; 
19209620;19584898;20966046;24725430'  
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Table. S8. Top 25 Genes with the Highest Degree in the inferred GRN. 

Genes 
Degree in 

Predicted GRN 
Degree in  
Prior GRN 

Betweenness in 
Predicted GRN 

Betweenness in 
Prior GRN 

ATF4 1083 230 0.0401 0.0887 
CEBPB 1059 230 0.0432 0.0921 
MED12 1044 195 0.0363 0.0372 
ETS1 1006 177 0.0320 0.0383 

TRIM28 893 471 0.0141 0.2758 
BCL6 850 179 0.0244 0.0328 
CTCF 847 508 0.0325 0.3440 
BRD4 834 540 0.0257 0.2927 
NELFA 769 112 0.0211 0.0207 
CXXC1 326 85 0.0225 0.0152 

REL 191 82 0.0314 0.0057 
FOSL2 155 115 0.0231 0.0594 
JUNB 58 81 0.0073 0.0076 
IRF4 15 54 0.0055 0.0045 
YY1 15 60 0.0036 0.0058 

TP73 12 9 0.0028 0.0039 
HLA-DRA 11 0 0.0020 0 

TTC28 11 1 0.0023 0 
ETV3L 11 0 0.0028 0 
FADS3 11 1 0.0020 0 
PRKCQ 11 5 0.0015 0.0027 
HMGN1 11 19 0.0015 0.0002 

EZH2 10 12 0.0024 0.0167 
MYOF 10 0 0.0021 0.0000 

NFATC2 10 43 0.0017 0.0155 
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Table. S9. Top 10 Gene Regulatory Relationships with the Highest Probability. 
Gene1 Gene2 Probability Supports 
CTCF BCL6 0.972349 [1, 2] 

TRIM28 TP73 0.96763 - 
TRIM28 REL 0.959507 - 
TRIM28 HOPX 0.958511 - 
TRIM28 SLC11A1 0.955651 [3] 
TRIM28 CEBPB 0.954477 [4] 
TRIM28 SMAD3 0.952957 [5, 6] 
TRIM28 CYP1B1-AS1 0.952921 - 
TRIM28 ADGRG6 0.952217 [7] 
BRD4 STON2 0.952198 - 

Note: “-” indicates that there are currently no studies directly proving the relationship. 
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Table. S10. Top 10 Genes with the Highest Degree in the inferred GRNs. 
PBMC_ID_IFNB1 PBMC_ID_CTRL 

Genes Degree BC Genes Degree BC 
MBOAT1 25.8719 0.0047 CREBBP 1398.837 0.2196 
ADAP2 25.8652 0.0045 BATF 1381.977 0.2255 
PSD3 24.893 0.0042 ETS1 1278.961 0.1659 

CYP1B1-AS1 24.8664 0.0044 TRIM28 992.9819 0.0874 
SLC44A1 23.8944 0.004 MED12 960.9083 0.0884 

SMC2 23.8831 0.0042 CTCF 956.8952 0.0843 
MAPKAPK2 23.8781 0.004 BRD4 918.0545 0.0711 

TBC1D32 23.8509 0.0041 ATF4 627.038 0.036 
ETV6 22.9016 0.0034 BCL6 340.2386 0.0094 
JAK2 22.8998 0.0037 CEBPB 252.9377 0.0053 

Note: Bold style indicates that the gene has evidence to be potentially relevant with IFN-β 
stimulation. 
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Table. S11. The computational efficacy comparison of PRISM-GRN and the baseline methods. 

 
Tasks Time (s) 

Peak CPU 
memory (Mb) 

Peak GPU memory 
(Mb) 

A549 
PRISM-

GRN 
GRN Reconstruction 205.63 255.61 4767.23 
Causality Prediction 209.99 256.02 4792.92 

GRACE 
GRN Reconstruction 436.92 193.44 10696.31 
Causality Prediction 522.57 193.27 11624.14 

GeneLink 
GRN Reconstruction 539.88 119.27 348.49 
Causality Prediction 366.37 103.74 716.75 

3T3  
PRISM-

GRN 
GRN Reconstruction 138.71 136.38 2344.58 
Causality Prediction 137.29 136.04 2356.31 

GRACE 
GRN Reconstruction 217.28 93.16 5232.44 
Causality Prediction 250.78 92.79 5683.78 

GeneLink 
GRN Reconstruction 257.13 57.56 196.35 
Causality Prediction 187.56 49.58 436.13 



15 
 

Table. S12. The performance of PRISM-GRN on GRN Reconstruction with different sizes of 
genomic window in Signac. 

Dataset Window(bp) Accuracy Precision Recall F1 AUROC AUPRC 

A549 
2000 0.9906 0.5375 0.2377 0.3297 0.9892 0.4458 
1500 0.9906 0.5378 0.241 0.3329 0.9892 0.4458 
1000 0.9906 0.5353 0.2517 0.3424 0.9892 0.4456 

GM12878 
2000 0.9817 0.6343 0.1892 0.2915 0.981 0.4746 
1500 0.9817 0.6383 0.1871 0.2894 0.981 0.4745 
1000 0.9817 0.6293 0.1904 0.2924 0.981 0.4745 

3T3 
2000 0.9953 0.5379 0.1935 0.2846 0.9947 0.464 
1500 0.9953 0.5308 0.188 0.2777 0.9947 0.464 
1000 0.9953 0.5379 0.1935 0.2846 0.9947 0.464 

K562 
2000 0.9756 0.6477 0.2171 0.3252 0.9713 0.488 
1500 0.9756 0.6509 0.2158 0.3241 0.9713 0.4881 
1000 0.9756 0.6529 0.2118 0.3199 0.9713 0.4881 
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Table. S13. The performance of PRISM-GRN on causality prediction with different sizes of 
genomic window in Signac. 

Dataset Window(bp) Accuracy Precision Recall F1 AUROC AUPRC 

A549 
2000 0.9852 0.786 0.6267 0.6889 0.9917 0.7467 
1500 0.9852 0.7864 0.6298 0.6913 0.9917 0.7466 
1000 0.9852 0.7927 0.6194 0.6855 0.9917 0.7468 

GM12878 
2000 0.9711 0.7596 0.6704 0.7095 0.9875 0.7709 
1500 0.9712 0.7742 0.6422 0.696 0.9875 0.7706 
1000 0.9712 0.7671 0.6558 0.7029 0.9875 0.7707 

3T3 
2000 0.9928 0.7844 0.6591 0.7109 0.9959 0.7553 
1500 0.9928 0.7835 0.6573 0.7094 0.9959 0.7553 
1000 0.9928 0.784 0.6583 0.7102 0.9959 0.7553 

K562 
2000 0.9611 0.7868 0.6381 0.6968 0.9803 0.7623 
1500 0.9612 0.7748 0.6614 0.7091 0.9803 0.7628 
1000 0.9613 0.7807 0.6518 0.7046 0.9803 0.7626 
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Figure S1 

Figure S1. The performance comparison of PRISM-GRN with the baseline methods on the 
benchmark datasets with different peak-to-TSS distance thresholds (1500, 1000, 500) in ground 
truth GRN reconstruction. The AUROC and AUPRC metrics are used to evaluate the performance, 
and the results demonstrate that PRISM-GRN outperforms the baseline methods across all datasets.  
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Figure S2 

Figure S2. Receiver Operating Characteristic (ROC) curves and Precision-Recall (PRC) Curves for 
each class in causality prediction on the rest three benchmark datasets, including GM12878, K562, 
and 3T3 dataset, illustrating the detailed performance of PRISM-GRN and the baselines in causality 
prediction.   
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Figure S3 

Figure S3. A-B. The distribution of the Wasserstein distance across all genes between different 
batches in the A549 and GM12878 datasets, respectively. C-E. The PCA plots of the 
concatenated data of the batches from different datasets. 
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Figure S4 

Figure S4. GO enrichment analysis results based on all genes and the genes in Cluster 0 of the A549 
dataset. The results from the specific gene cluster reveal additional GO terms that are more relevant 
to A549 cells, thereby enhancing the understanding of gene functions. 
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Figure S5 

Figure S5. GO enrichment analysis results based on the genes from Cluster 1 to Cluster 9 of the 
A549 dataset.  
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Figure S6 

Figure S6. Density plots of betweenness centrality and degree for all genes calculated in the 
predicted GRN of CD4 Naïve cells. These plots illustrate the distribution of centrality and 
connectivity metrics for genes within the network.  
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Figure S7 

Figure S7. Ablation study comparing the impact of perturbations added to different modalities. In 
both GRN reconstruction and causality prediction tasks, introducing noise to either modality leads 
to a decline in PRISM-GRN’s performance, highlighting the necessity of incorporating both 
modalities for optimal results. When noise was introduced into the scRNA-seq data, the average 
AUPRC across the four benchmark datasets reduced by about 14.54% in GRN reconstruction and 
11.48% in causality prediction, for the scATAC-seq data, the perturbations led to a smaller average 
decline of approximately 2.88% in GRN reconstruction and 5.40% in causality prediction. 
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Figure S8 

Figure S8. Boxplots of PRISM-GRN’s performance under different random seeds. The results show 
that PRISM-GRN achieves consistently stable performance across both GRN reconstruction and 
causality prediction tasks, indicating robustness to training randomness.  
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Figure S9 

Figure S9. Line plots of changes in AUPRC under varying proportions of doublet noise 
introduced into the two modalities. PRISM-GRN demonstrates relatively stable performance 
across different noise levels.  
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Figure S10 

Figure S10. Line plots of changes in AUPRC under varying proportions of mis-annotation 
noise label introduced into the two modalities. PRISM-GRN demonstrates its dependency on 
the accuracy of the cell annotation of both modalities. 
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Figure S11 

Figure S11. Line plots show the changes in AUPRC under varying proportions of incorrect 
prior regulatory relationships. As expected, AUPRC generally decreases as the proportion of 
incorrect priors increases. Introducing 30% noisy prior GRNs resulted in an average decrease 
of 2.76% in AUPRC across the four benchmark datasets, whereas performance remained 
relatively stable when the noise level was below 0.1. This indicates that PRISM exhibits a 
certain degree of robustness to prior knowledge noise.  



28 
 

Content S1. Data preprocessing pipeline 
ChIP-seq Data 

For ChIP-seq data derived from ChIP-Atlas, we used the bedtools [8] with the Linux command 
“bedtools window -a $A_Bed -b $B_Bed -w $width” to process the raw sequencing data. $A_Bed 
is a cell-type-specific TF ChIP-seq BED file, $B_Bed is a BED file containing the transcription start 
sites (TSS) of all genes, and the $width specifies the distance range from the transcription start site 
(TSS) of the gene within which the transcription factor (TF) binding is considered significant, which 
is set as 2,000. Accordingly, we can obtain the prior Gene Regulatory Network (GRN) �, along 
with the TF set and the target gene set, denoted as G(TF) and G(ChIP).  
scRNA-seq Data 

For scRNA-seq data, following the standard pipeline using Scanpy [9], the cell-by-gene count 
matrix was performed with the quality control to filter out the low-quality cells and genes. First, the 
number of detected genes per cell is calculated, where cells with minimal gene expression are 
removed. Next, the total UMI count per cell is computed to assess sequencing depth, and cells with 
low UMI counts are excluded. Additionally, the percentage of mitochondrial gene expression is 
calculated, the cells whose mitochondrial gene expression exceeds 5% are then removed. Lastly, 
filtering criteria are applied to retain cells that meet specific thresholds for the minimum and 
maximum number of detected genes (150 and 5,000, respectively) and the minimum UMI count 
(100). The cells after quality control are denoted as C(scRNA). 

Based on the quality-controlled cell-by-gene matrix, the top 3,000 highly variable genes (HVGs) 
are detected using function scanpy.pp.highly_variable_genes with default parameters. Specifically, 
it normalizes the dispersions based on the gene expression values for each gene, and sorts them to 
select the HVGs, denoted as G(HVG). We finally performed the log transformation on the filtered 
cell-by-gene count matrix to obtain the expression profile matrix. 
scATAC-seq Data 

For scATAC-seq data, the low-quality cells with fewer than 150 fragments or more than 5,000 
fragments are filtered out, yielding the high-quality cells denoted as C(scATAC). Signac [10] was 
subsequently used to transform the cell-by-peak matrix to the cell-by-gene chromatin accessibility 
score matrix, with the CreateGeneActivityMatrix() function (default settings). Notably, the 
upstream and downstream parameters that define the genomic regions around each gene were also 
set as 2,000, consistent with the standard used in ChIP-seq data preprocessing.  
Input Matrix Generation 

For paired datasets, the final cells are the intersection of the quality-controlled cells from scRNA-
seq data and scATAC-seq data, namely, C(scRNA) ∩  C(scATAC). For unpaired dataset, the final 
cells correspond to their quality control results. The final genes are the union of TFs derived from 
ChIP-seq data, and the intersection of the target genes and the HVGs, namely, G(TF) ∪
 (G(ChIP) ∩ G(HVG)) , covering the known TFs and the significant genes among the cell-type-
specific dataset. According to the final cells and final genes, the input gene expression matrix � ∈
 ℝ� × �, and the chromatin accessibility score matrix � ∈  ℝ� × �, where � is the number of final 
genes and � is the number of final cells, can be generated by trimming the normalized cell-by-
gene expression matrix and the cell-by-gene chromatin accessibility score matrix.  
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Content S2. Detailed descriptions of The performance metrics 
We firstly evaluate the performance of PRISM-GRN and the baseline methods based on Area 

Under the Receiver Operating Characteristic (AUROC) and Area Under Precision-Recall Curve 
(AUPRC).  

Accuracy, Precision, Recall, F1 are also used to show more explicit comparisons in some 
evaluation experiments.  

 Accuracy = �����
�����������

 ,  (1) 

 Precision = ��
�����

 ,  (2) 

 Recall = ��
�����

 ,  (3) 

 F1 = �∗���������∗������
����������������

 ,  (4) 

where TP, FP, TN, FN represents the true predicted gene regulatory interactions, false predicted 
gene regulatory interactions, true predicted non-interacted genes, and false predicted non-interacted 
genes, respectively. Notably, the macro averaging was used in all evaluations. 
  The betweenness centrality used to identify regulators in GRNs can be defined as follows: 

 ��� = ∑ �(�,� | �)
�(�,�)� �� ��  ,  (5) 

where ��� is the betweenness centrality of gene �, �(�, �) is the total number of shortest paths 
between gene �  and gene � , and �(�, � | �)  is the number of regulatory paths passing through 
node gene �. 
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Content S3. The batch effect analysis when using unpaired scATAC-seq data 
In fact, PRISM-GRN does not directly utilize raw peak-resolution scATAC-seq data. Instead, we 

preprocess the data using the Signac toolkit, which transforms the high-resolution peak matrix into 
gene-resolution gene accessibility scores. While this transformation may result in a certain degree 
of resolution loss of the fine-grained chromatin accessibility signal, it serves two important purposes: 
(1) it facilitates alignment with the scRNA-seq gene expression data, and (2) it mitigates certain 
batch-specific artifacts associated with peak calling and sequencing depth variability. By 
aggregating signal to the gene level, this preprocessing step acts as a form of normalization that 
smooths over some of the noise and variability across batches. 

To further illustrate this, we provide examples from two datasets used in this study: A549 and 
GM12878. Specifically, the A549 dataset consists of two independently sequenced scATAC-seq 
datasets from separate experimental batches, while the GM12878 dataset includes two sequencing 
replicates derived from the same experimental protocol. For both datasets, we applied the Signac 
pipeline to convert raw peak-level scATAC-seq data into gene-level gene accessibility scores.  

We used the Wasserstein distance to assess the similarity between the distribution of the 
transformed gene accessibility score across different batches. For each gene, we computed the 
Wasserstein distance between its gene accessibility score distributions in two batches. This yielded 
a gene-level measure of distributional divergence. Specifically, let � = [��, ��, … , ��] and � =
[��, ��, … , ��] denote the gene accessibility score vectors of a given gene across � cells in two 
batches. The Wasserstein distance between these two distributions is defined as: 

 �(�, �) = �
�

∑ ��(�) − �(�)��
���  ,  (6) 

where �(�) and �(�) are the �-th elements of the sorted vectors � and �, respectively. The lower 
the value of �(�, �) is, the greater the similarity between the distributions of � and �. 

We then aggregated these values across all genes and visualized the global distribution of 
Wasserstein distances using a density plot. As shown in Supplemental Figures S6, the Wasserstein 
distances between gene accessibility scores across different batches for both A549 and GM12878 
remain at relatively low levels, indicating high distributional similarity of gene accessibility scores 
across batches within the same dataset. Notably, the GM12878 dataset, which consists of two 
replicates from the same sequencing experiment, exhibits even lower Wasserstein distances 
compared to A549, whose two batches originate from independent sequencing experiments. This 
further supports the validity of using the Wasserstein distance as a quantitative measure of similarity 
across batches.   

Furthermore, we extracted the gene score matrices from two batches of the A549 dataset and two 
batches of the GM12878 dataset, and also concatenated one batch from A549 with one batch from 
GM12878. PCA was performed separately on these three data groups. As shown in the figure, the 
two batches from the same dataset exhibit highly consistent distributions in the PCA space, 
indicating minimal batch effects. In contrast, the concatenated data from different cell lines (A549 
and GM12878) show clearly distinct distributions, reflecting substantial differences in their gene 
accessibility score profiles. 

Although PRISM-GRN itself does not incorporate explicit batch correction modules, the 
transformation by Signac and PRISM-GRN’s Bayesian variational framework and integration at the 
gene level allow it to model shared regulatory patterns in a way that is relatively robust to residual 
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batch effects.  
Content S4. The ablation experiments 

PRISM-GRN is built upon a probabilistic framework that explicitly models the generation of 
gene expression as a downstream consequence of the expression levels of transcription factors (TFs) 
targeting it and the accessibility of its chromatin through the cell-type-specific GRN. As such, both 
modalities, expression (from scRNA-seq) and cis-regulatory accessibility (from scATAC-seq), 
along with the prior GRNs, play essential roles in the inference process. Removing one of the 
modalities would undermine the biological interpretability of the inferred regulatory relationships, 
as the model would no longer reflect the hierarchical nature of transcriptional regulation. 

To empirically assess the impact of each modality, we conducted ablation experiments using 
structured noise injection into either the scRNA-seq or scATAC-seq data across several benchmark 
datasets. These experiments serve to approximate modality dropout while preserving the model’s 
structure. Specifically, for each selected modality data, we added values drawn from a truncated 
normal distribution ��(0, 0.1�) to all features, ensuring the perturbation is strictly non-negative. 
The performance was evaluated on both tasks of GRN reconstruction and causality prediction across 
the four benchmark datasets by repeating each ablation setting with six independent random seeds 
to ensure statistical robustness. 

As shown in Supplemental Figure S7, the values of AUPRC consistently decreased as noise 
intensity increased, confirming that perturbations in either modality degrade model performance. 
Notably, we observed that the degradation was more severe when noise was introduced into the 
scRNA-seq data, suggesting that expression information plays a more dominant role in PRISM-
GRN’s inference pipeline. In contrast, while noise in the scATAC-seq data also impaired 
performance, its effect was less pronounced.  

This asymmetry likely stems from the preprocessing approach applied to the scATAC-seq data, 
where we employ Signac to convert high-resolution peak signals into gene-level chromatin 
accessibility scores. Although this facilitates alignment between chromatin features and gene 
expression, it may introduce a degree of information loss due to the smoothing and peak-to-gene 
linkage steps. Consequently, the contribution of the scATAC-seq modality, while biologically 
meaningful, its contribution may appear diminished relative to scRNA-derived features in PRISM-
GRN’s current implementation. 
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Content S5. The sensitivity analysis on GRN preprocessing variation 

We used Signac to preprocess the scATAC-seq data. In this manuscript, no additional 
normalization was applied beyond the default procedures in Signac, which we used to convert peak-
level signals into gene-level chromatin accessibility scores. This transformation enables alignment 
between modalities and helps mitigate batch effects to some extent; however, it leads to information 
loss due to resolution reduction and score aggregation. 

Moreover, the peak-to-gene linkage in Signac requires setting a genomic window around the gene 
body to associate nearby peaks with each gene. In our default setting, we used a ±2000 bp window 
(2000 bp upstream and downstream of the gene body). To evaluate the robustness of our results to 
this parameter, we conducted additional experiments using alternative window sizes of ±1000 bp, 
±1500 bp, and ±20000 bp. Specifically, we performed PRISM-GRN on the four benchmark datasets 
across the three alternative window sizes in both tasks of GRN reconstruction and causality 
prediction. As shown in Supplemental Table S12 and Table S13, while performance fluctuates 
slightly with different window sizes, the overall trends in GRN reconstruction and causality 
prediction remain consistent. This suggests that PRISM-GRN is relatively robust to the specific 
choice of peak-to-gene linkage parameters. 
  



33 
 

Content S6. The sensitivity analysis on cell annotation noise 

We first evaluated the impact of doublets. Following the simulation strategy adopted by scIBD 
[11], we constructed datasets with varying doublet ratios ranging from 0.05 to 0.2 (with an interval 
of 0.05). Because we used cell-type-specific data as the benchmark, all simulated doublets were 
homotypic. For scRNA-seq data, each doublet was generated by randomly selecting two cells and 
averaging their gene expression profiles. In contrast, for scATAC-seq data, doublets were 
constructed by taking the union (element-wise maximum) of chromatin accessibility profiles from 
two randomly selected cells. As illustrated in Supplemental Figure S9, the performance of PRISM-
GRN remains robust across different doublet ratios, demonstrating its resilience to homotypic 
doublet contamination. 

Subsequently, to further assess the robustness of our method under imperfect cell annotations, we 
simulated mislabeled or noisy data by injecting perturbations into both scRNA-seq expression and 
scATAC-seq gene accessibility profiles. Instead of modifying the label space directly, we perturbed 
the input features to reflect biologically plausible annotation errors such as expression shifts or 
experimental noise. Similarly, we randomly selected a prosportion of cells (ranging from 0.05 to 0.2 
with an interval of 0.05) and added noises. For each selected cell, we added values drawn from a 
truncated normal distribution ��(0, 0.1�) to all features, ensuring the perturbation is strictly non-
negative.  

As shown in Supplemental Figure S10, PRISM-GRN exhibits a gradual performance drop as 
noise increases, indicating its sensitivity to incorrect annotations in both modalities. Notably, in 
PRISM-GRN, the performance degradation is more pronounced when noise was injected into the 
scRNA-seq data compared to scATAC-seq, suggesting that accurate cell annotation for 
transcriptomic data plays a more critical role in model performance. In addition, although the use 
of Signac to convert peak-resolution scATAC-seq data into gene accessibility scores facilitates data 
alignment and mitigates batch effects, it may lead to a loss of regulatory information due to the 
transformation. 
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Content S7. The sensitivity analysis on prior GRN noise  

To assess PRISM-GRN’s robustness to imperfect prior knowledge, we conducted a sensitivity 
analysis by introducing increasing levels of noise into the prior GRNs. Specifically, to simulate the 
effect of noisy biological priors, we perturbed the training set by randomly introducing incorrect 
TF-target regulatory edges at five different noise levels: 1%, 5%, 10%, 20%, and 30% of the original 
number of positive edges.  

As shown in Supplemental Figure S11, AUPRC exhibits an overall downward trend as the level 
of noise in the prior GRNs increases, reflecting PRISM-GRN’s inherent dependence on high-quality 
prior networks. However, when the noise ratio remains below 10%, the performance of PRISM-
GRN stays relatively stable. This indicates that the variational inference framework underlying 
PRISM-GRN is capable of effectively absorbing moderate levels of noise, thus demonstrating its 
robustness and capacity to denoise imperfect biological priors to some extent. 
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