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Supplemental Figure S1

Validation of the deletion mutants used in this study. (A) Heatmap displaying the
percent of nucleosome occupancy relative to the control in each mutant at each mutant
gene locus. The diagonal represents a significant dropout in chromatin occupancy,
indicating a precise deletion at the ORF of every mutant. (B) Plot of MNase-seq reads
for ace2A showing the absence of reads in the ACEZ2 locus. (C) Plot of MNase-seq
reads for mbp1A showing the absence of reads in the MBP1 locus.
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Supplemental Figure S2

Wild-type (WT) yeast sample compared to the baseline control, which is
computed from all 201 mutant MNase-seq samples. (A) Distribution of MNase
fragment lengths between the baseline control and WT on chromosome |V.

(B) Distribution of MNase fragment midpoint positions between the baseline control and
WT on chromosome IV. (C) Comparison of nucleosome-sized fragments (140—180 bp)
in gene bodies between baseline control and WT. (D) Comparison of TF-sized
fragments (40—100 bp) in gene promoters between baseline control and WT.
Comparison scatter plots across all mutants of (E) nucleosome and (F) TF occupancies
between the baseline control used in the study and the WT sample. Points above the
diagonal indicate a higher correlation in the baseline control, and points below the
diagonal indicate a higher correlation in the individual WT sample.
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Supplemental Figure S3

Benchmarking the JS divergence measure in known mutant-gene regulatory
interactions. (A) The PRS2 promoter contains Tye7, Bdf1, and Cbf1 binding sites. The
deletion of CBF1 (cbf14, blue line), causes a significant chromatin change represented
by the peak in JS divergence, whereas tye7A (green), bdf1A (red), and other mutants
(gray) do not result in notable changes to the chromatin at this locus. (B) Known
regulation at multiple promoters (GAL1-10, MET10, RAD51, and HIS4) showing
elevated JS divergences (red) compared to other mutants (gray).



| = |
GAL10| | GAL1 H154|
Control Control Control
250 250 250
200 200 200
w0 K freir kY R f [ 3 TL )§ | | 3 AR B ® 50 AR E ; ¢
1004 1 ¥ 100 § 100 P §
501 50 ' 50 ik
gal8oA gal8oA bas1A
250 250 250
200 200 200
L@ ! j
1501 \ 1 150 , 150{ 4 & B % ? LA i" ‘ '
1004 S ' 100 100 ¢
504 L 1 “,t‘ 50 & g‘ ! " 50
gal80_rep1A gal80_rep1A bas1_rep1A
250 250 250
200 200 200 ; ;
1501 \ 1501 ’ 1504 % °§ it ’? 4 ﬁ "-" d ¥t
1004 ¢ { 100 § ! 100 4
: Aii i Ala X j il
gal80_rep2A gal80_rep2A bas1_rep2A
250 250 250
200 \ 20014 200
i ¢ : i : w4 i
1501 ¢ o g 1501 ¢ y { ¢ 150{ ‘% & k % 1 § '.5! !” ¥ i
1004 | i f i 100 \ !" K 100 )
L1 3 ¢ 1
chrll:277102-279152 chrll:278220-280270 chrlll:67143-69193

Supplemental Figure S4

MNase fragment plots of mutants at key loci compared to their replicates. ga/80A
compared to two gal80A replicates at the (A) GAL10 locus and (B) GAL1 locus.
(C) bas1A compared to two bas7A replicates at the HIS4 locus.
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Supplemental Figure S5

Validation of select mutants using two additional replicates. A set of 19 mutants
were selected and two additional biological replicates of MNase-seq were generated for
each mutant. Each scatter plot represents the nucleosome-sized MNase fragments at a
gene between merged replicate mutants (y-axis) vs. the original mutant (x-axis), with
every point representing a gene/locus. R values are Pearson correlations.
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Supplemental Figure S6

Impact of GAL80 deletion (gal80A) on gene expression at various GAL loci. Values
are reported as log, fold change in gene expression. The housekeeping gene actin,
ACT1, is included as a control. (A) Microarray expression data for gal80A from
Kemmeren et al. (2014). (B) Microarray expression data for ga/80A from Hu et al.
(2007). (C) RNA-seq data in this study for gal80A. (A), (B), and (C) were all performed
in rich media containing 2% dextrose. (D) RNA-seq data in this study for wild-type yeast
strains grown in galactose compared to dextrose.
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Supplemental Figure S7

Nucleosome disorganization changes across all captured mutant-gene
interactions. Inset plots highlight the interactions with the lowest and highest
nucleosome disorganization changes, respectively. Positive values indicate an increase
in nucleosome disorganization, and negative values indicate a decrease in nucleosome
disorganization.



galsoA aft1iA

TF Occupancy A TF Occupancy A

Nuc Occupancy A Nuc Occupancy A
Expression Expression
Motif 4 €@ @ Motif 4 4
2 O O > N *
NS SR AMENNC
" o o & o §
Log2 Fold Change . . Log2 Fold Change . .
-04 00 04 -04 0.0 04
ure2A
bas1A
TF Occupancy A
TF Occupancy A
Nuc Occupancy A
Nuc Occupancy A
Expression
Expression
Motif
Motif ® o 2 2
N QLT L@
N & N \2\ \Y
D %b‘ 2 o_;\ Q‘b AQ' (9(’3 NoAN) QL Q X
S FHFE P S O T e o
Log2 Fold Change - . Log2 Fold Change -
-04 0.0 04 -04 00 04
lys14A arg80A
TF Occupancy A TF Occupancy A
Nuc Occupancy A Nuc Occupancy A
Expression . Expression
Motif  4p ¢ Motif
P & & B & P
FEFES & E

Log2 Fold Change - . Log2 Fold Change . .

-04 00 04 -04 0.0 04

Supplemental Figure S8

Genes in annotated pathways contain chromatin changes associated with the
deletion of specific TFs. The heatmaps display nucleosome and TF occupancy
changes, along with gene expression changes (log,(FC)). A gene is annotated with a
black diamond if a binding motif for the deleted factor is present in its promoter.
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Supplemental Figure S9

Observed chromatin changes sometimes extend to neighboring genes. Deletion of
PHOB85 (pho85A) resulted in chromatin and expression changes at PHOS, but also
resulted in chromatin changes at CWC21 and KREZ2; the latter two genes were not
associated with strong gene expression changes, however.
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Potential modes of transcriptional regulation and interference in neighboring
genes revealed by chromatin changes. (A) In divergent genes, 3 distinct modes of
chromatin changes are observed at shared promoters. The shared promoter can exhibit
bidirectional chromatin changes, unidirectional (single gene) chromatin changes with
promoter activity extending into the neighboring (inactive) gene, or unidirectional
chromatin changes with a well-defined boundary despite the close proximity. (B) In
tandem genes, we observed cases where the promoter of an upregulated gene extends
well into the polyadenylation site (PAS) of its neighboring upstream gene, when the
upstream gene is itself inactive (based on the data of Kemmeren et al.).
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Supplemental Figure S11

Heatmap displaying Pearson correlations between key chromatin features, gene
expression, and transcription rate. Changes in chromatin features are calculated
from MNase data reported in this study. Changes in gene expression are calculated
from Kemmeren et al. (2014). Transcription rates are determined by NET-seq, as
reported by Churchman and Weissman (2011).
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Supplemental Figure S$S12

Pioneering characteristics of Cbf1 observed at multiple promoters. The promoters
of MET10, DRS2, and PRS2 contain binding sites for multiple TFs in our dataset.
However, only the deletion of CBF1 (cbf1A) resulted in significant TF occupancy
changes compared to the other TF deletion mutants.
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Supplemental Figure S13

Changes in chromatin structure can recapitulate shared regulatory networks
between more than one mutant. arg80A/arg81A share overlapping targets as
observed from chromatin changes, as well as swi4A/swi6A.
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Supplemental Figure S14

Predicted regulatory network of all available mutants in the MNase-seq dataset.

Edges are colored based on upregulation (red) or downregulation (blue) as predicted
from chromatin features.
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Supplemental Figure S$15

Number of overlapping targets between an expression TRN and its corresponding
chromatin TRN. Significant targets in the expression TRN were based on a | log,(FC) |
> 0.85 cutoff and significant chromatin targets were based on the Laplacian cutoff.

(A) Number of total overlapping targets. (B) Percent overlap of chromatin TRN vs. the
expression TRN.
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Characterization of direct interactions using chromatin evidence. (A) Bar plot
displaying the number of significant direct vs. indirect interactions in this dataset. Direct
interactions (n = 178) are validated with both annotated binding site data and measured
TF occupancy change. (B) Validation of annotated TF binding sites by motif (FIMO),
Maclsaac et al., and Rossi et al. with measured TF occupancy changes. Purple

represents binding sites or motifs exhibiting a significant TF occupancy change
(| logx(FC) | > 0.5).
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