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NP-hardness proof via a reduction from Partition

We reduce the classic NP-complete Partition problem to the decision version of our c-separability
problem (and to the zero-optimum test of the associated optimization problem). Given a multiset

S of strictly positive integers, let T :=
d∑

k=1

sk. For any chosen cardinality m ∈ {1, . . . , d}, we

build three d-dimensional Gaussian components with means µ(i) and (diagonal) standard-deviation
vectors σ(i), together with a separation threshold c. We then consider the following optimization
problem: we introduce nonnegative slack variables βij for each pair {i, j} and minimize

∑
(i,j) βij

subject to the c-separability constraints. The reduction is engineered so that:

• choosing a binary selector α ∈ {0, 1}d with
d∑

k=1

αk = α⊤1 = m picks m coordinates;

• with our specific (µ(i),σ(i), c), the constraints become simple inequalities in α and the βij ;

• crucially, the objective can be driven to zero if and only if the chosen coordinates sum to T/2;

thus deciding whether the optimum is zero (or, equivalently, whether there exists a feasible choice
with all βij = 0) decides Partition. Hence the optimization problem is NP-hard, and the decision
version of c-separability is NP-complete.

The optimization model. Let L :=
{
{1, 2}, {1, 3}, {2, 3}

}
. Our optimization problem is

minimize
∑

{i,j}∈L

βij (1)

subject to
d∑

k=1

α2
k

(
µ
(i)
k − µ

(j)
k

)2 ≥
(
c2 − βij

)
·max

{ d∑
k=1

αkσ
(i)
k ,

d∑
k=1

αkσ
(j)
k

}
∀{i, j} ∈ L,

βij ≥ 0 ∀{i, j} ∈ L, αk ∈ {0, 1} ∀k ∈ {1, . . . , d},
d∑

k=1

αk = m.
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(We keep α2
k to match the original statement; note α2

k = αk for binary αk.)

Partition. Given a nonempty multiset S = {s1, . . . , sd} of strictly positive integers and T :=
d∑

k=1

sk, decide whether there exists S1 ⊆ S with
∑

x∈S1
x =

∑
x∈S\S1

x = T/2. Equivalently, decide

whether there is a subset whose sum is T/2.

The reduction. Fix any m ∈ {1, . . . , d} (we will handle the unknown m at the end). Let s ∈ Rd

denote the vector of the elements of S (in any order) and let
√
s be its elementwise square root.

Define

c =
√

T/2, (2)

µ(1) = 0 ∈ Rd, σ(1) = 1
21 ∈ Rd,

µ(2) =
√
m

√
s ∈ Rd, σ(2) = 1 ∈ Rd,

µ(3) = −T
2 1 ∈ Rd, σ(3) = ms ∈ Rd.

With this choice, problem (1) becomes

minimize β12 + β13 + β23 (3)

subject to mα⊤s ≥
(
T
2 − β12

)
·max{1

2 α
⊤1, α⊤1},

T 2

4 α⊤1 ≥
(
T
2 − β13

)
·max{1

2 α
⊤1, mα⊤s},

d∑
k=1

αk

(√
m
√
sk +

T
2

)2
≥

(
T
2 − β23

)
·max{α⊤1, mα⊤s},

β12, β13, β23 ≥ 0, α ∈ {0, 1}d, α⊤1 = m.

Because m ≥ 1, sk ≥ 1 and α⊤1 = m, we have max{1
2 α

⊤1, α⊤1} = m and max{1
2 α

⊤1, mα⊤s} =
mα⊤s and max{α⊤1, mα⊤s} = mα⊤s. Dividing by these strictly positive quantities yields the
equivalent program

minimize β12 + β13 + β23 (4)

subject to T
2 −α⊤s ≤ β12, (5)
T
2 − T 2

4α⊤s
≤ β13, (6)

T
2 −

∑d
k=1 αk

(√
m
√
sk+

T
2

)2
mα⊤s

≤ β23, (7)

β12, β13, β23 ≥ 0, α ∈ {0, 1}d, α⊤1 = m.

Lemma 1. In any optimal solution of (4), β13 = 0 =⇒ β23 = 0 and β23 > 0 =⇒ β13 > 0.

Proof. Since
√
m
√
sk and T/2 are strictly positive, the following holds,

d∑
k=1

αk

(√
m
√
sk +

T
2

)2
≥

d∑
k=1

αk

(
T
2

)2
= T 2

4 α⊤1 = T 2

4 m.

Dividing by mα⊤s > 0 we obtain∑d
k=1 αk

(√
m
√
sk +

T
2

)2
mα⊤s

≥ T 2

4α⊤s
.
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Hence the left-hand sides of (7) and (6) satisfy

T
2 −

∑d
k=1 αk

(√
m
√
sk +

T
2

)2
mα⊤s

≤ T
2 − T 2

4α⊤s
.

If (6) holds with β13 = 0, then the left-hand side of (7) is ≤ 0 and, by nonnegativity, setting β23 = 0
is feasible and strictly better for the objective. The contrapositive yields the second implication.

Lemma 2. In any optimal solution of (4), exactly one of the following three mutually exclusive
regimes holds (with α⊤1 = m):

α⊤s < T
2 ⇐⇒ β12 > 0, β13 = 0, β23 = 0 and β12 + β13 + β23 > 0,

α⊤s > T
2 ⇐⇒ β12 = 0, β13 > 0, β23 ≥ 0 and β12 + β13 + β23 > 0,

α⊤s = T
2 ⇐⇒ β12 = β13 = β23 = 0.

Proof. From (5), if α⊤s < T/2 then β12 must be positive; if α⊤s ≥ T/2 we can set β12 = 0. From
(6), if α⊤s > T/2 then T/2 − T 2/(4α⊤s) > 0 and β13 > 0 is forced; if α⊤s ≤ T/2 we can set
β13 = 0. Lemma 1 aligns β23 with β13 in the optimal solution. The three cases cover all possibilities
for α⊤s and are mutually exclusive.

Theorem 1. Let T =
d∑

k=1

sk and fix m ∈ {1, . . . , d}. There exists a subset of exactly m elements

of S summing to T/2 if and only if the optimal value of (4) equals 0.

Proof. (⇒) If there exists α ∈ {0, 1}d with α⊤1 = m and α⊤s = T/2, then by (5)–(7) we can set
β12 = β13 = β23 = 0 and obtain objective value 0.

(⇐) Conversely, if the optimal value is 0, then all βij = 0. By Lemma 2 this forces α⊤s = T/2
with α⊤1 = m. Thus the chosen m elements sum to T/2.

Corollary 1 (Decision version). The decision version of c-separability (“do there exist α with
α⊤1 = m such that all constraints hold with βij = 0?”) is NP-complete.

Proof. Membership in NP: a certificate is α; verifying the three inequalities with βij = 0 is
polynomial-time.

NP-hardness: Given an instance S of Partition with d = |S|, build the Gaussians as in (2).
For each m ∈ {1, . . . , d}, query the decision oracle once. By Theorem 1, the oracle answers YES
for some m iff S is a YES-instance of Partition. This is a polynomial number of polynomial-
time checks, so a polynomial-time algorithm for the decision version would yield a polynomial-time
algorithm for Partition. Therefore the decision problem is NP-complete.

Remark (optimization version). Since determining whether the optimum of (4) equals 0 is
NP-complete, the optimization problem (1) is NP-hard.
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Supplemental Figures
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Figure 1: Probability mass of the distances to the centers (sample means) in units of
√
tr(Σ) for

the two largest cell types in the Zheng8eq (top) and IPF (bottom) datasets. The fraction of data
lying within one standard deviation of the mean is reported as 63%, 55%, 57%, and 68%, from left
to right and top to bottom.
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Figure 2: F1 scores of a logistic regression when provided varying numbers of marker genes computed
by the different methods on the two smaller datasets (Zheng8eq, MC) and on HCA. On HCA, cell
type labels were merged across tissues. scGeneFit was run in pairwise and centers mode on Zheng8eq
and MC, and in centers mode only on HCA. Shaded regions depict standard deviation.
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Figure 3: F1 scores of a k-NN classifier when provided varying numbers of marker genes computed
by the different methods on all six datasets. On HCA, cell type labels distinguished the tissue of
origin. scGeneFit was run in pairwise and centers mode on Zheng8eq and MC, and in centers mode
only on the remaining datasets. Shaded regions depict standard deviation.
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Figure 4: F1 scores of a logistic regression classifier when provided varying numbers of marker genes
computed by SepSolve, Spapros, and scGeneFit. On HCA, cell type labels distinguished the tissue
of origin. Dashed lines indicate results obtained when SepSolve and scGeneFit hyperparameters
were tuned using grid search and dual annealing, respectively (Methods). Shaded regions depict
standard deviation.
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Figure 5: UMAP embeddings generated from 10,000 highly variable genes (original space) and from
the 20 marker genes selected by G-PC, Spapros and scGeneFit on the human lung dataset MeL.
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Figure 6: Stability of 25 marker genes computed by the different methods on random subsamples of
cells (top) or perturbed counts (bottom). DE crashed on subsampled IPF data since an insufficient
number of cells per cell type remained.

9



0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

MC

k-NN
LR

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

Zheng8eq

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

IPF

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

FL

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

HCA

0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

MeL

Figure 7: F1 scores of a logistic regression and a k-NN classifiers across all datasets when using 50
marker genes selected by SepSolve for varying separation constant c.
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Figure 8: Running times (log scale, in seconds) with respect to the number of target genes across
datasets.
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