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Interpretable phenotype decoding from multi-condition sequencing data with ALPINE

Supplemental Methods: Derivation details for the ALPINE framework

To briefly recap, we represent a log-transformed single-cell RNA expression dataset as X € R™*" , where m
is the number of genes and n is the number of cells. ALPINE decomposes X into a non-negative gene feature
matrix W € R™** and a cell embedding matrix H € RF*"™, where k is the total number of latent components.
To incorporate label information and guide the decomposition, a subset of the gene signatures in W are

guided € Rk
and H, g(i)ided € RF*" such that the total number of components is distributed as >_;_, k; + kunguided = &,
where ¢ represents the number of covariates specified by the user. The unguided signatures correspond
to components that are not supervised by any label information. These components preserve cell-level
variations unaffected by batch or covariate influence. The matrices W and H can be expressed as stacked
forms of the guided and unguided signatures:

supervised by user-supplied covariates. We define the corresponding submatrices as w

_ 1) -
— H guided

| | | | —  Hgles —

guided
_ 1) (2) () _ .
W= Wguided Wguided T Wguided Wunguided and H =

o o A —

L H, unguided i

To incorporate guided covariate information, we transform each covariate into a one-hot encoded matrix,
denoted as V(") € R%*", where d; represents the number of unique labels in the covariate. We then introduce
a weight matrix B(*) € R%** which models the relationship between the signatures and labels. The goal is to
approximate B H g(;)l 4eq Such that it aligns with the one-hot encoded matrix Y (*). Thus, the full optimization

objective for the ALPINE model is formulated as:

argmin ||| X — WH||% + Z )\z'DKL(Y(i)HB(i)Hg(Zded
W,H>0 i=1

)+JW)|,

where the first term, || X — W H||%, represents the reconstruction error, ensuring that the decomposition
W H closely approximates the original matrix X. The second term, which we also call the prediction term,
e i MDg (YW BYH gl)ide 4), uses the generalized Kullback-Leibler (KL) divergence (Lee and Seung 2000)

to enforce alignment between the guided submatrices H, @) 4 and their corresponding label matrices Y (V:

guide
Dy (Y®||B® Hg(qued) => > (Yonlog(— & ) = Yyun + (B® H;Jided)\m)
m n (B(l)ngideden

As an aside, we note that generalized KL divergence Dy, (A||B) may be a slightly confusing name for this
measure as Y and BH are not probability distributions, but we are following the naming convention in (Lee
and Seung 2000), which seemed to have opted for this name because the measure reduces to the standard
KL-divergence when ),  A;; = >, Bij = 1.

The last term, J(W), is a regularization term for the matrix I, which controls the complexity of the
learned gene features, which we discuss in more detail below. This formulation balances the need for a
good reconstruction of the expression matrix X while ensuring that the guided components align with
the provided label information. By using KL divergence instead of the traditional Frobenius norm in the
prediction loss term, we refine the approach to better handle probabilistic label alignment, which is more
appropriate when dealing with categorical data.
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To derive the multiplicative update rules, we first compute the partial derivatives of the objective function
with respect to each matrix. For each guided submatrix H ®

guided” the partial derivative of the reconstruction
term is given by:

2
X — WH||F — _owWTx 4 2W(i)TW(i)H(i)
8H(1) guided’
guided
where W) corresponds to the factors associated with H, g(fl)l ded
The partial derivative of the prediction term is:
ONy:108 740 i
ODkL(Y U{)B Agided) _ poyr y(()_) gy
a}‘rguided B(Z)ngided

By combining these two terms, we use the multiplicative update method by Lee and Seung Lee and Seung

2000 to derive the update rule for H g(f,l)l ded:

oWHT X + )\(i)B(i)TLi()i)
H(i)_ (_ H(i)_ ® ‘ B H o .
guided guided QW(i)TW(i)Hg(Z)d 4 A B@OT1

uided
For the unguided submatrix Hynguided, Only the reconstruction term contributes, which leads to the following

update rule:

QWX
2WT WHunguided .

Hunguided — Hunguided ©

Since the guided signatures H g(fl)l deq and unguided signatures Hynguided are independent, we can combine
them into a complete H matrix by merging the corresponding numerator and denominator terms. The

multiplicative update rule for the entire 4 matrix is thus:

2WTX 4+ P
H+«HQO ——————
YT wWHE O
where
T Y@
P=[P P, - Py Opg], and P=\BY |
B(l) ngided
and
AT
Q = [Ql Q? e Qg OHunguided} ) Where Qi = AZB(,L) 1y(i) .

In this formulation, P represents the vertically stacked numerator terms from all guided components, and @
represents the vertically stacked denominator terms. Since the unguided part is not regularized by the labels,
the corresponding submatrices in P and () are assigned zero values, ensuring that the shapes of P and @
match the structure of H.



Interpretable phenotype decoding from multi-condition sequencing data with ALPINE

Before introducing the multiplicative update for W, we define the regularization term J(W), which incor-
porates LASSO, Ridge, and orthogonality constraints to enhance the uniqueness and generalizability of
gene signatures which refers from the Lin & Boutros’s matrix regularization part Lin and Boutros 2020. This
regularization is expressed as:

(1 — 1ratio)
JW) = allao y_|Wij| + —— W)+ B WIW,

0,J 1<j

Elastic net regularization orthogonal regularization

where o controls the strength of Elastic net regularization, and {14, balances LASSO and Ridge penalties.
The orthogonality term, weighted by 3, reduces similarity between signatures to promote diversity. The
partial derivatives of the regularization equation for each term with respect to W are as follows:

0 0 -

01 o1 .
S IV = o St (VW T) =W

d 1
8W§ Wi W, Witr(W(E—I)WT):W(E—I)
1<J

where E is the ones matrix with the appropriate dimension and I is the identity matrix.

The gradient of || X — W H||%. with respect to W is:

olX — WH|% _

—2XH" +2WHH'.
oW +

Incorporating regularization, the multiplicative update for W is thus:

2XHT

W Wo .
2WHHT + o1 — Nyatio) W + BW (Lixk — Tixk)) + cdliatioLimxk

Here, H includes both guided and unguided submatrices, ensuring a structured decomposition.

For each B( associated with the i-th guided submatrix H,. ®

quideas the partial derivative of the KL divergence
is:

DL (Y| B l)Hg(;)lded S Tinh +3
6‘bi,j - — B( )H z) ~ 7,1
In matrix form, this simplifies to:
i i) g (®) ;
aDKL(Y( )HB( )ngided) _ Y(l) H(Z) + ]_H( @)
0) = i (i) guided guided -
oB B( )nglded

Using the multiplicative update rule, the update for B is:
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Y ® @ T
BH W guided
guided

B®W @ ® —

()
1 ngided

This update ensures that B(*) is adjusted iteratively to better fit the data while maintaining non-negativity.
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Supplemental Figures
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Supplemental Figure 1. UMAP visualization of the simulation datasets. In the simulation datasets, each scenario
includes 10 different simulations. We visualize the first single-cell sequencing dataset from the naive scenario. Different
colors represent the population (cell types), batches, stimulation, and severity.
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Supplemental Figure 2. Effect sizes associated with batch effects and covariate influences. The box plots compare
the effect size for three conditions: a ‘clean’ matrix, a matrix with added batch effects (‘batch’), and a matrix with
both covariate and batch effects (‘covariate (w/ batch)’). The effect size is calculated as the Frobenius norm, which is
normalized by the cell count to correct for the varying number of cells across the different label combinations shown on
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Supplemental Figure 3. Cell clustering performance with varying extrinsic variability. F1 ARI based on k-means
clustering (with the known number of cell types) for training, validation, and holdout sets are shown for the (A)
naive and (B) cell-specific scenarios across different values of o, a hyperparameter in Symsim that controls the within
cell-type variability of gene expression. ALPINE (embedding and reconstructed counts) are compared against two
existing disentanglement methods (scDisInFact and scParser), as well as two baseline approaches (raw, which uses the
confounded counts including both batch and covariate effects directly, and raw (PCA), which uses the top 50 PCs of the
raw counts). Note that scParser does not provide functionatly to generate reconstructed counts and cannot be applied to

new datasets so only results for the embeddings are available.
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Supplemental Figure 4. Performance comparisons evaluating ability to identify condition-associated genes at
different levels of extrinsic variability. AUPRC of ALPINE, scDisInFact, and scParser for the (A) naive and (B) cell-
specific perturbation scenarios using different o values (0.4, 0.6, 0.8, 1.0), a hyperparameter in Symsim that controls the
within cell-type variability of gene expression.
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Supplemental Figure 5. Comparison of differential expression (DE) analysis and disentanglement methods for
identifying condition-associated genes in the naive, overlap, and two-patterns simulation scenarios. Disentanglement
methods (ALPINE, scParser, scDisInFact; red background) directly provide condition-associated gene weights. DE
analysis was performed on pseudo-bulk cells using Wilcoxon rank-sum or ¢-tests, with batch correction by Scanorama,
ComBat, or no correction (blue background).
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Supplemental Figure 6. Comparison of differential expression (DE) analysis and disentanglement methods for
identifying condition-associated genes in the cell-specific simulation scenario. Disentanglement methods (ALPINE,
scParser, scDisInFact; red background) directly provide condition-associated gene weights. DE analysis was performed
on pseudo-bulk cells using Wilcoxon rank-sum or t-tests, with batch correction by Scanorama, ComBat, or no correction
(blue background). ALPINE, scParser, and scDisInFact show the same results in both A and B, which show the DE
results calculated with (A) all cell types, including those without perturbation, or (B) using only the perturbed cells.
Note that in a non-simulation scenario, it is unlikely that a user would know exactly which cells are perturbed. However,
we include B also for comparison purposes.
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Supplemental Figure 7. Time performance on the simulation datasets. The bar plot illustrates the average time
performance across different approaches. It is noteworthy that both ALPINE (which tested 100 hyperparameter sets)
and scParser (which tested 5 hyperparameter sets) possess the optimization (Opt) process and execution (Exec) with
optimal settings. Due to the absence of optimization code in scDisInFact, we utilized only the default parameters. Each
bar includes 10 replicates for each scenario, resulting in a total of 40 measurements.
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Supplemental Figure 8. Comparison between using a mini-batch training strategy versus full dataset under different
simulation scenarios. (A) Average F1 ARI scores (considering cell cluster and batch integration) and standard errors
across four simulated datasets using either mini-batch training or the entire dataset for both training and holdout
sets. We see that the mini-batch training strategy typically results in slightly improved generalizability. (B) Line plots
visualizing the progression of different loss terms (total is the sum of reconstruction and prediction losses) as the number
of epochs increases, with colors indicating whether the models were trained using mini-batch or full-batch optimization.
We observe that mini-batch training often converges quicker than full-batch training.
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Supplemental Figure 9. ASW score comparisons of ALPINE against other methods for batch effect removal and
cell type annotation. ASW of ALPINE versus scDisInfact, scParser, Seurat3, Harmony, Liger, scVI, Scanoramam MNN,
and ComBat, in batch effect removal using three real datasets based on cell type clustering with Leiden (using default
resolution=1). Methods producing low-dimensional embeddings (scDisInfact, scParser, Seurat3, Harmony, Liger, scVI)
are compared with ALPINE embeddings in (A)-(C), while methods reconstructing counts (Scanorama MNN, ComBat,
and scVI (counts)) are compared with ALPINE-reconstructed counts in (D)-(F). (A)&(D). Human peripheral blood
monouclear cell datasets with two batches and matched cell types. (B)&(E). Pancreatic cells dataset with five batches
and matched cell types. (C)&(F). Mouse retina data with two batches and non-identical cell types.
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Supplemental Figure 10. Comparison of reconstructed counts after batch removal in the simulation dataset. The
reconstructed counts from each method are compared against clean counts prior to adding batch and covariate effects
in each simulation scenario. The box plots illustrate the mean squared errors (MSE) for each method across the four
different scenarios (lower MSE indicates that the resulting counts are more similar to original counts). Since Combat,
MNN, and Scanorama were specifically designed for batch removal, they lack the capability to apply learned information
to eliminate batch effects from unseen datasets, validation, and holdout sets, which is why they are labeled as "Not
applicable."
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Supplemental Figure 11. Analyzing similarity of identified condition-associated genes in the brain cancer dataset.
(A) Sex-associated genes. (B) Different cancer type-associated genes. Note that the scDisInFact genes within each
covariate are the same, as there is no way to identify distinct label-associated genes (see Methods for further details).
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Supplemental Figure 12. Comparing scDisInFact and ALPINE for the adipose tissue case study. (A) The UMAP depicts
the cell embeddings post-integration using scDisInFact, colored according to associated covariates, assay, organism,
and cell type, with complete cell annotations displayed below. (B) The upset plot provides insight into the overlap of
significant label-associated genes identified by ALPINE and scDisInFact. Due to ALPINE's design, covariate signatures
can be directly associated with their corresponding labels, enhancing interpretability in the context of multi-label
covariates, such as species (organism). In contrast, scDisInFact generates a single set of gene scores for the entire
organism covariate, lacking label-specific resolution.
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Supplemental Figure 13. Visualization of guided and unguided embeddings based on an example training dataset
from the naive simulation scenario. The guided embeddings are visualized using PCA: (A) batch embeddings, (B)
stimulation embeddings, and (C) severity embeddings. (D) UMAP plot representing the unguided embeddings. The
different colors used in the plots highlight labels corresponding to distinct covariates.
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Supplemental Figure 14. Training loss curves generated from an example run of ALPINE using the naive simulation
dataset. Illustrative example of training loss curves, including the total loss, reconstruction loss, and individual prediction

losses for each covariate.

100 125 150

Epoch

175

200

1e6

Reconstruction Loss

5.5

5.0

4.5 1

4.0 1

Loss

3.5

3.0

251

o

25 50 75 100 125 150 175 200

Epoch
Prediction Loss(Condition)

16000 1

14000 A

12000 1

10000 A

6000 -

4000 -

2000 A

19

o

25 50 75 100 125 150 175 200

Epoch




Interpretable phenotype decoding from multi-condition sequencing data with ALPINE

A 0.7 0.7 0.7
s ek . .
L4 . ' * *
5 * o * * i
£ . . . . 1
505 0.5 0.5 i
H] |
32 |
£ i
KA ]
=03 034 0.3 :
w ]
= i
< i
0.1 0.1 0.1 !
i
T T T T T T T T T T T T . T T T T
50 60 70 80 90 100 0.1 02 03 0.4 05 2 3 4 5 6
# total component batch component ratio lambda (log10)
074 ¢ . . ol 071k - 3 7S o] 074 . o . . .
] i
£ !
5 0.5 054 i 0.5
2
2 i
£ i
KA 1
=03+ 034 i 0.3
jnd |
z |
< i
0.1 014 1 0.1
i
T T T T T T . T T T T T T T T T T T
0.0 02 0.4 06 0.8 1.0 0.0 02 04 06 08 1.0 0.0 0.1 02 03 0.4 05
alpha 11 ratio beta

- . ]
2 . . ¢ . . i
£ 054 ® 054 o . ® 05 ® - ®
°
@
8
£
L 03 03 03
—
o
4
<
0.14 0.14 014
T T T T T T T T T T T T T T
50 60 70 80 9 100 0.1 0.2 0.3 0.4 0.5 2 6
# total component batch component ratio lambda (log10)
0.7 0.7 0.7
. ek
® v .
s . s . ! o . L . i e . . .
5 0.5 0.5 0.5+ i
3 |
2 i
2 i
£ |
£03 0.3 0.3 |
— i
w i
z i
< i
0.14 0.14 0.1+ |
i
T T y T T T T T T T T —— T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
alpha 11 ratio beta
0.5+ 2 o| 054 05+
g . . . . . . .
@ . .
2
ELER 03 03
—
iy
4
<
0.14 0.14 014
T T T T T T T T T T T T T T T T
50 60 70 80 90 100 0.1 0.2 0.3 0.4 0.5 2 3 4 5 6
# total component batch component ratio lambda (log10)
To5-a . = 0.5 . + o| 054 + . + .
3 7 . 1
2
8
g 0.34 0.34 0.34
—
o
4
<
0.14 0.14 0.1+
T T y T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0.0 0.1 0.2 0.3 0.4 0.5
alpha 11 ratio beta

Supplemental Figure 15. ALPINE'’s performance is robust to different hyperparameter choices. In each subfigure, ARI
F1 using ALPINE with alternative hyperparameters is shown. The blue star represents ALPINE with the optimized
hyperparameter from a 50-epoch process, while each red dot shows the performance when varying a single hyperparam-
eter, while keeping others fixed. (A). Human peripheral blood monouclear cell datasets with two batches and matched
cell types. (B). Pancreatic cells dataset with five batches and matched cell types. (C). Mouse retina data with two batches
and non-identical cell types.
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Supplemental Tables

Supplemental Table 1. Relative performance of ALPINE (embeddings and counts) to existing methods and baselines
in the training dataset. All test statistics and p-values are based on one-sided Wilcoxon rank sum test comparisons of

FiARI.

Set Scenario ALPINE variant Comparison method Statistic ~ p-value
train naive ALPINE (embeddings) scDisInFact (embeddings) 36.00  8.60e-01
train naive ALPINE (embeddings) scDisInFact (counts) 82.00  7.34e-03
train naive ALPINE (embeddings) scParser (embeddings) 4.00 1.00e+00
train naive ALPINE (embeddings) raw (counts) 100.00 5.41e-06
train naive ALPINE (embeddings) raw (PCA) 100.00 5.41e-06
train naive ALPINE (counts) scDisInFact (embeddings) 84.00 4.47e-03
train naive ALPINE (counts) scDisInFact (counts) 94.00 1.62e-04
train naive ALPINE (counts) scParser (embeddings) 49.00 5.44e-01
train naive ALPINE (counts) raw (counts) 100.00 5.41e-06
train naive ALPINE (counts) raw (PCA) 100.00 5.41e-06
train overlap ALPINE (embeddings) scDisInFact (embeddings) 45.00 6.58e-01
train overlap ALPINE (embeddings) scDisInFact (counts) 78.00 1.77e-02
train overlap ALPINE (embeddings) scParser (embeddings) 21.00  9.88e-01
train overlap ALPINE (embeddings) raw (counts) 99.00  1.08e-05
train overlap ALPINE (embeddings) raw (PCA) 99.00  1.08e-05
train overlap ALPINE (counts) scDisInFact (embeddings) 57.00  3.15e-01
train overlap ALPINE (counts) scDisInFact (counts) 88.00  1.44e-03
train overlap ALPINE (counts) scParser (embeddings) 34.00 8.91e-01
train overlap ALPINE (counts) raw (counts) 98.00 2.17e-05
train overlap ALPINE (counts) raw (PCA) 99.00  1.08e-05
train two-patterns ALPINE (embeddings) scDisInFact (embeddings) 64.00 1.57e-01
train two-patterns ALPINE (embeddings) scDisInFact (counts) 85.00  3.42e-03
train two-patterns ALPINE (embeddings) scParser (embeddings) 10.00  9.99e-01
train two-patterns ALPINE (embeddings) raw (counts) 100.00  8.15e-05
train two-patterns ALPINE (embeddings) raw (PCA) 100.00  8.93e-05
train two-patterns ALPINE (counts) scDisInFact (embeddings) 82.00 7.34e-03
train two-patterns ALPINE (counts) scDisInFact (counts) 94.00 1.62e-04
train two-patterns ALPINE (counts) scParser (embeddings) 32.00 9.17e-01
train two-patterns ALPINE (counts) raw (counts) 100.00  8.15e-05
train two-patterns ALPINE (counts) raw (PCA) 100.00  8.93e-05
train cell-specific =~ ALPINE (embeddings) scDisInFact (embeddings) 44.00 6.85e-01
train cell-specific =~ ALPINE (embeddings) scDisInFact (counts) 91.00 5.25e-04
train cell-specific =~ ALPINE (embeddings) scParser (embeddings) 80.00  1.16e-02
train cell-specific =~ ALPINE (embeddings) raw (counts) 94.00 1.62e-04
train cell-specific =~ ALPINE (embeddings) raw (PCA) 91.00  5.25e-04
train cell-specific =~ ALPINE (counts) scDisInFact (embeddings) 85.00  3.42e-03
train cell-specific =~ ALPINE (counts) scDisInFact (counts) 99.00  1.08e-05
train cell-specific =~ ALPINE (counts) scParser (embeddings) 99.00  1.08e-05
train cell-specific =~ ALPINE (counts) raw (counts) 100.00 5.41e-06
train cell-specific =~ ALPINE (counts) raw (PCA) 100.00 5.41e-06
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Supplemental Table 2. Relative performance of ALPINE (embeddings and counts) to existing methods and baselines
in the holdout dataset. All test statistics and p-values are based on one-sided Wilcoxon rank sum test comparisons of

F1ARI.

Set Scenario ALPINE variant Comparison method Statistic ~ p-value
holdout naive ALPINE (embeddings) scDisInFact (embeddings) 41.00 7.59e-01
holdout naive ALPINE (embeddings) scDisInFact (counts) 91.00 5.25e-04
holdout naive ALPINE (embeddings) raw (counts) 100.00  3.19e-05
holdout naive ALPINE (embeddings) raw (PCA) 100.00 3.19e-05
holdout naive ALPINE (counts) scDisInFact (embeddings) 79.00 1.44e-02
holdout naive ALPINE (counts) scDisInFact (counts) 98.00 2.17e-05
holdout naive ALPINE (counts) raw (counts) 100.00 3.19e-05
holdout naive ALPINE (counts) raw (PCA) 100.00  3.19e-05
holdout overlap ALPINE (embeddings) scDisInFact (embeddings) 49.00 5.44e-01
holdout overlap ALPINE (embeddings) scDisInFact (counts) 75.00 3.15e-02
holdout overlap ALPINE (embeddings) raw (counts) 97.00 1.64e-04
holdout overlap ALPINE (embeddings) raw (PCA) 98.00 1.04e-04
holdout overlap ALPINE (counts) scDisInFact (embeddings) 62.00 1.97e-01
holdout overlap ALPINE (counts) scDisInFact (counts) 82.00 7.34e-03
holdout overlap ALPINE (counts) raw (counts) 97.00 1.64e-04
holdout overlap ALPINE (counts) raw (PCA) 98.00 1.04e-04
holdout two-patterns ALPINE (embeddings) scDisInFact (embeddings) 67.00 1.09e-01
holdout two-patterns ALPINE (embeddings) scDisInFact (counts) 86.00 2.60e-03
holdout two-patterns ALPINE (embeddings) raw (counts) 100.00 7.47e-05
holdout two-patterns ALPINE (embeddings) raw (PCA) 100.00 7.47e-05
holdout two-patterns ALPINE (counts) scDisInFact (embeddings) 83.00 5.75e-03
holdout two-patterns ALPINE (counts) scDisInFact (counts) 95.00 1.03e-04
holdout two-patterns ALPINE (counts) raw (counts) 100.00 7.47e-05
holdout two-patterns ALPINE (counts) raw (PCA) 100.00 7.47e-05
holdout cell-specific =~ ALPINE (embeddings) scDisInFact (embeddings) 60.00 2.41e-01
holdout cell-specific =~ ALPINE (embeddings) scDisInFact (counts) 93.00 6.55e-04
holdout cell-specific =~ ALPINE (embeddings) raw (counts) 81.00 9.27e-03
holdout cell-specific =~ ALPINE (embeddings) raw (PCA) 81.00 9.27e-03
holdout cell-specific =~ ALPINE (counts) scDisInFact (embeddings) 75.00 3.15e-02
holdout cell-specific =~ ALPINE (counts) scDisInFact (counts) 96.00 2.90e-04
holdout cell-specific =~ ALPINE (counts) raw (counts) 88.00 1.44e-03
holdout cell-specific =~ ALPINE (counts) raw (PCA) 88.00 1.44e-03
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Supplemental Table 3. Evaluation of batch and covariate removal performance using ALPINE, scDisInFact, and
scParser on the brain cancer dataset. The 1 — ARI and 1 — NMI performance metrics are calculated based on k-means
clustering (with the known number of cell types) of the unguided embeddings.

ALPINE ALPINE (counts) scDisInFact scParser
Category 1-ARI 1-NMI 1-ARI 1-NMI 1-ARI 1-NMI 1-ARI 1-NMI

Patients 0.885 0.724 0.878 0.742 0.923 0.849 0.917 0.705
Sex 0.979 0.941 0.972 0.964 1.007 0.995 0.979 0.911
Types 1.011 0.988 0.969 0.942 0.971 0.994 1.015 0.978

Supplemental Table 4. Evaluation of cell type clustering performance using ALPINE, scDisInFact, and scParser on
the brain cancer dataset. The ARI and NMI performance metrics are calculated based on k-means clustering (with the
known number of cell types) of the unguided embeddings.

ALPINE ALPINE (counts) scDisInFact scParser
Category ARI NMI ARI NMI ARI NMI ARI NMI
Cell 0.413 0.531 0.359 0.472 0.352 0.457 0.171 0.335
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Supplemental Table 5. Evaluation of batch and covariate removal performance using ALPINE and scDisInFact in the
adipose tissue case study. The 1 — ARI and 1 — NMI performance metrics are calculated based on Leiden clustering
(with a default resolution of 1) of the unguided embeddings.

ALPINE scDisInFact
Category 1-ARI 1-NMI 1-ARI 1-NMI
Assay 0.991 0.949 0.998 0.799
Organism  0.949 0.845 0.972 0.861
Sex 0.988 0.958 0.986 0.940
Tissue 0.935 0.828 0.946 0.799

Supplemental Table 6. Evaluation of cell type clustering performance of ALPINE and scDisInFact in the adipose
tissue case study. The ARI and NMI performance metrics are calculated based on Leiden clustering (with a default
resolution of 1) of the unguided embeddings.

ALPINE scDisInFact
Category ARI NMI ARI NMI
Cell 0329 0.606 0.232 0.622
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