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Supplemental Methods21

S1 The probabilistic model of ScisTree22

ScisTree2 and ScisTree share the same probabilistic model and the overall local search approach.23

For better understanding of ScisTree2, we present the most important aspects of ScisTree here: the24

probabilistic model and the algorithms. For more details, see Wu (2020).25

The raw data for ScisTree and ScisTree2 are the sequence reads D. Suppose that we are to infer26

the genotypes G. The maximum likelihood estimate Ga is:27

Ga = argmax
G

Pr(D|G)

Finding Ga by enumerating G using the above equation directly is infeasible when the number28

of cells n and the number of sites m are not very small. CellPhy computes the likelihood Pr(D|T )29

by incorporating the uncertainty of G at each leaf of T using a modified version of the well-30

known Felsenstein’s algorithm. One major computational difficulty for CellPhy’s likelihood is its31

complexity: T has branch lengths, and Pr(D|T ) needs to (implicitly) sum over all possible alleles at32

internal nodes. This leads to a relatively complex probabilistic model. This is perhaps the reason33

why CellPhy becomes slow for large number of cells (say 10, 000) despite the fact that CellPhy34

builds on top of RAxML-NG (Stamatakis, 2014), one of the most well-engineered phylogenetic tree35

inference tools. Moreover, CellPhy’s likelihood can not be easily extended to support the IS model.36

The posterior probability model. ScisTree and ScisTree2 use the posterior probability of37

genotypes G conditional on the given sequence reads D and the IS model:38

Pr(G|D, I) =
Pr(G, I|D)∑
G1

Pr(G1, I|D)
=

1

C
Pr(G, I|D) (S1)
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where I is the event for the underlying mutations that satisfy the IS model. Note that C is a39

constant for a fixed D. Now,40

Pr(G, I|D) = Pr(I|G,D)Pr(G|D) = Pr(I|G)Pr(G|D)

Here, Pr(I|G,D) = Pr(I|G) because for a fixed G, I and D are conditionally independent. If G41

does not satisfy the IS model, then Pr(I|G) = 0. On the other hand, if G satisfies the IS model,42

it is still possible that the IS model is violated: more than one mutation at a site may not lead to43

an observable incompatibility with the IS model in G. For simplicity, we assume that Pr(I|G) = 144

if G is compatible with the IS model. Therefore, we can restrict G to only those genotypes that45

satisfy the IS model. Therefore, Equation S1 is simplified for such G:46

Pr(G|D, I) =
1

C
Pr(G|D)

In the following, for clarity we ignore this constant, and restrict our attention to genotypes that47

satisfy the IS model. That is, for any G satisfying the IS model, the posterior probability48

Pr(G|D, I) = Pr(G|D)

Optimization in ScisTree. ScisTree and ScisTree2 aim at finding the genotypes G∗ that maxi-49

mizes the posterior probability where G∗ satisfies the infinite sites (IS) model:50

G∗ = argmax
G∈GI

Pr(G|D) =
m∏
s=1

n∏
c=1

Pr(G[c, s]|D) (S2)

where c refers to a cell, s refers to an SNV site and GI is the space of all genotypes that satisfy the51

IS model. The above equation is due to the assumption of independence among the genotypes of52

the cells. For a fixed G, the probability Pr(G[c, s]|D) in Equation S2 is the posterior probability53

of G[c, s] (the genotype of the cell c at the site s being G[c, s])for D) and is computable from the54

outputs of standard genotype callers.55

Recall that we say G satisfy the IS model if there exists a (possibly multifurcating) phylogeny56

T , called perfect phylogeny (Gusfield, 1991), where leaves are labeled by the cells (rows) in G, and57
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each column (site) c of G labels a single branch of T such that exactly the cells below this branch58

are the mutants of c. Also note that under the IS model, G∗ uniquely identifies a rooted perfect59

phylogeny. Thus after obtaining G∗, we can use this perfect phylogeny as the underlying cell lineage60

tree. However, it is known that finding G∗ is NP hard (Wu, 2020).61

To overcome this computational difficulty, ScisTree made the following observation: if the un-62

derlying (rooted and binary) tree T is given, then we only need to determine the best genotypes63

conditional on T :64

G∗(T ) = argmax
G∈GI

Pr(G|D,T ) (S3)

The critical observation is that G∗(T ) can be easily determined for any given T in polynomial65

time using algorithms in Sect. S2. This is because there are only O(n) branches in T for placing66

the (single) mutation for each site s. Once the mutation is placed for a site s, the genotypes at s for67

all cells are determined, and the posterior probabilities of the genotypes can be computed. Thus,68

for each site, we can simply examine each branch and place the mutation at the branch that gives69

the largest posterior probability. Since we assume the genotypes of different sites are independent,70

we can find the optimal genotypes of a site independently of other sites.71

Since the underlying tree T is not known, ScisTree takes the local search approach to find the72

optimal binary cell lineage tree T ∗ and G∗(T ∗): (i) construct an initial tree T0, and (ii) iteratively73

search for a tree Tm by making a single tree rearrangement (say subtree prune and regraft) from74

the current tree Tm−1 where Tm gives the largest posterior probability in Eq. S3. Eventually Tm75

converges to a local optima T ∗. Then we can determine G∗(T ∗) from the optimal T ∗. Note that76

the search space contains tree topologies and is thus discrete. Therefore, the local search must be77

terminated.78

S2 Algorithms of ScisTree79

There are two main aspects of the ScisTree algorithm. First, it performs the nearest neighbor80

interchange (NNI) local search. Here, an NNI operation swaps a subtree rooted at a node p with a81

subtree rooted at a node q where q’s sibling is p’s parent. ScisTree computes the posterior probabil-82
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ity of each tree within the 1-NNI neighborhood. Second, for each tree in the 1-NNI neighborhood,83

ScisTree uses the following algorithm to compute the maximum posterior probability.84

Suppose that we are given a rooted binary tree T . We want to find the genotypes G∗ that satisfy85

the IS model and maximize Pr(G∗|D,T ) where T is the underlying cell lineage tree. We denote86

P (G∗, T ) = maxG∈GIPr(G|D,T ) as the maximum posterior probability of genotypes for T . Recall87

that under the IS model, the set of mutant genotypes at a site s corresponds to a subtree in T and88

the single mutation occurs on the branch entering the subtree root. We define Ps,v(G,T ) for a site89

s and a node v as the posterior probability of all genotypes at site s given that the mutation at s90

occurs on the branch entering v. Since T is fixed, we can enumerate each subtree rooted at node v91

and compute Ps,v(G,T ). The maximum probability Ps(G
∗, T ) at site s is:92

Ps(G
∗, T ) = maxv∈Nodes(T )Ps,v(G,T ) (S4)

Here, Nodes(T ) is the set of nodes in T . Recall that for each cell c and each site s, M [c, s]93

is equal to the posterior probability of the cell c having the wild-type genotype (0) at the site s.94

Thus, the posterior probability of allele 0 (respectively 1) at the site s and the cell c is M [c, s]95

(respectively 1.0−M [c, s]). Then, for each node v in T :96

Ps,v(G,T ) =
∏

u∈Leaf(Tv)

(1.0−M [c(u), s])×
∏

v/∈Leaf(Tv)

M [c(v), s] (S5)

Here Tv refers to the subtree rooted at node v. Leaf(Tv) is the set of leaves of Tv. And c(u) is97

the cell corresponding to a leaf u in T .98

Computing Ps,v(G,T ) for each v directly from Equations S4 and S5 would lead to O(n2) time for99

each site. A simple observation is that we can apply dynamic programming by taking a bottom-up100

approach as follows. We define Qs(v) as the ratio of the probability of the genotypes within the101

subtree Tv being genotype 1 and the probability of these genotypes being genotype 0 at the site s.102

That is (also see the main paper),103

Qs(v) =
∏

c∈taxa(v)

1−M [c, s]

M [c, s]

Then, we have:104
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P (G∗, T ) =
∏

s=1...m

Ps(G
∗, T ) =

∏
s=1...m

(
[maxv∈Nodes(T )Qs(v)]

∏
c=1...n

M [c, s]

)

The algorithm for computing Ps(G,T ) based on Q(v) for a single site s for a fixed binary tree105

T is given below, which has the running time of O(n). Computing P (G,T ) involves calculating the106

product of Ps(G,T ) over each of m sites and thus takes O(mn) time.107

Algorithm 1 Maximum probability computation of binary genotypes of a single SNV site s

1: for node v ∈ T in the bottom-up order (i.e., leaves first) do
2: if v is a leaf then
3: Qs(v)← 1.0−M [c(v),s]

M [c(v),s]

4: else
5: Let vl and vr being the two children of v.
6: Qs(v)← Qs(vl)Qs(vr)
7: end if
8: end for
9: Ps(G,T )← maxv∈Nodes(T )Qs(v) ∗

∏
c=1...n M [c, s]

10: return Ps(G,T )

S3 Detailed algorithms for the SPR local search in ScisTree2108

For clarity, we provide detailed algorithms for performing the local SPR search.109

First, Algorithm 2 is for preprocessing. It computes the values of M1,M2 and M3 for each site110

for the original tree T before performing any SPR moves. That is, Algorithm 2 only runs once111

before each iteration of the local search.112
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Algorithm 2 Preprocessing step for computing Ms,1,Ms,2 and Ms,3 values for a specific site s from pre-
computed Qs(u) values.

1: for node u ∈ T in the bottom-up order (i.e., leaves first) do
2: if u is a leaf then
3: Ms,1(u)← Qs(u) � Ms,1(u): the largest Qs(v) for any v ∈ nodes(Tu) at s.
4: else
5: Let ul and ur being the two children of u.
6: Ms,1(u)← max(Ms,1(ul),Ms,1(ur), Qs(u))
7: end if
8: end for

� For a pair of nodes r and v ∈ Tr, Ms,2(r, v): the largest Qs(u) along the path from r to v at s.
9: for node v ∈ T do

10: Ms,2(v, v)← Qs(v)
11: r ← v
12: while r ̸= root(T ) do
13: Ms,2(p(r), v)← max(Ms,2(r, v), Qs(v))
14: r ← p(r)
15: end while
16: end for

� For a pair of nodes r and v ∈ Tr, Ms,3(r, v): the largest Qs(u) for any node u within Tr but is neither
in Tv and nor along the path from r to v.

17: for node v ∈ T do
18: Ms,3(v, v)← −∞
19: r ← v
20: while r ̸= root(T ) do
21: w ← sibling(r)
22: Ms,3(p(r), v)← max(Ms,3(r, v),Ms,1(w))
23: r ← p(r)
24: end while
25: end for

Algorithm 3 is to find the maximum posterior probability for a tree T ′ within 1-SPR neighbor-113

hood of the current tree T . That is, Algorithm 3 runs for a new tree obtained from some SPR114

operation.115
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Algorithm 3 Finding the tree with the maximum probability within one SPR move from the current tree
T . Return the maximum posterior probability.

1: for s = 1 . . .m do
2: Compute Qs(u) values for each node u in T and the site s using the probability computation algorithm

in the original ScisTree.
3: Compute Ms,1,Ms,2 and Ms,3 values for the site s using Algorithm 2.
4: end for

� Consider each rSPR move involving pruning a subtree Tu and regraft s.t. Tu becomes a sibling of the
node v

5: Pmax ← −∞
6: for node u ∈ T do
7: for node w2 ∈ T s.t. ww /∈ Tu do
8: v2 ← sibling(u), v ← p(u), v1 ← p(v), w1 ← p(w2)
9: P ← 1

10: for s = 1 . . .m do
11: MA ← max(Ms,1(v2),Ms,1(u),Ms,1(w2)),

Ms,2(r,v1)
Qs(u)

12: MB ← max(Ms,2(r, w2)Qs(u),Ms,3(child(r, v), v))
13: MC ← max(Ms,3(child(r, w1), w1),Ms,3(root(T ), r))
14: P ← P ∗max(MA,MB ,MC) ∗

∏n
c=1 M [c, s]

15: end for
16: Pmax = max(Pmax, P )
17: end for
18: end for
19: return Pmax

S4 Correctness of Algorithm 3 for evaluating one SPR move for a single site116

The key for the correctness of Algorithm 3 is that the Q values at tree nodes before and after the117

SPR move are highly correlated. This can be seen by carefully analyzing cases for Q′(x) for nodes118

x′ in T ′ as illustrated in Fig. 11 (main text). Q′ refers to the Q values after the SPR move. Q and119

Q′ are equal for many nodes, while are different in some other nodes. We have the following cases.120

1. Q′(x) = Q(x) for the node x that is outside the cycle formed by the paths r → v, r → w,121

v → u and w → u corresponding to the SPR move. There are the following cases for x.122

(a) x is within a subtree below v2, u and w2; their maximum Q values are the pre-computed123

M1(v2),M1(u) and M1(w2) respectively (the first three terms in Equation (3) of the main124

text).125

(b) x is within a subtree whose root vr is the child of some node on the path r → v or the126

path r → w but vr itself is not on these two paths. The maximum Q values for such127

nodes are M3(child(r, v), v) and M3(child(r, w), w) respectively (the 4th and 5th terms128

in Equation (3) of the main text).129
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(c) x is along the path from root(T ) to r, whose maximum Q value is M2(root(T ), r) (the130

6th term in Equation (3)).131

(d) x is outside the subtree rooted at r, whose maximum Q value is the pre-computed132

M3(root(T ), r) (the 7th term in Equation (3)).133

2. Q′(x) ̸= Q(x) for a node x where x is on the path r → v1 or the path r → w1.134

(a) x ∈ r → v1. Q′(x) is equal to Q(x) divided by Q(u) after the SPR (the 8th term in135

Equation (3)). This is because Q′ is for the tree after the SPR, where the leaves within136

Tu are pruned (i.e., absent from Tx after the SPR).137

(b) x ∈ r → w1. Q′(x) is equal to Q(x) multiplied by Q(u) (the 9th term in Equation (3)).138

This is after the SPR, the leaves within Tu are regrafted (i.e., inserted into Tx after the139

SPR).140

Algorithm 3 calculates the maximum of these nine cases for each site, which is equal to the141

maximum Q′ values at all nodes in T ′ after the SPR move. Algorithm 3 then returns the product142

of these maximum values over all sites. Thus, this algorithm correctly computes the maximum143

posterior probability P (T ′) after a specific SPR move.144

S5 The branch and bound approach145

We now describe the details of the branch and bound approach. To simplify the exposition, we146

focus on one SNV site: the upper bound for multiple sites is the product of the bounds of individual147

sites. For each node u, we consider each ancestor r of u. We let w be a descendant node of r where148

LCA(u,w) = r. Recall that LCA(u,w) is the lowest common ancestor of u and w in the tree. We149

consider each w in the top-down order. Initially, w is set to w0, the child of r that is not ancestral150

to u (i.e., w0 is the root of the subtree right under r not containing u). Then we move downwards151

from w0 to leaves. Throughout the search, we keep track of the maximal Q′ value so far, denoted as152

Q′
m. For each node w, we calculate B(u,w), an upper bound on the maximum Q′ values among all153

SPR moves that prune Tu to somewhere within Tw. Here, w is considered to be within Tw. There154

are two cases in this recursive search.155

1. If B(u,w) ≤ Q′
m, then there are no SPR moves within Tw that gives higher Q′ values than156
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Q′
m and the entire subtree Tw can be discarded. That is, any SPR operations that regraft Tu157

to be inside Tw are ignored. This can lead to significant savings of computation.158

2. Otherwise, we calculate the Q′ value for the SPR operation that regrafts Tu onto the branch159

that enters w using Algorithm 3. If Q′ > Q′
m, we let Q′

m ← Q′. Regardless whether Q′
m160

value is updated, we recursively process the two subtrees of w if w is an internal node, and161

terminate if w is a leaf.162

Obviously, to obtain large speedup, choosing a strong B(u,w) bound is critical. The best B(u,w)163

bound is the exact maximum posterior probability obtained from trees generated by all SPRs that164

regraft Tu to be inside Tw. But computing this exact maximum will not lead to any speed up:165

calculating this maximum would need to run Algorithm 3 for all possible SPRs within Tw; but the166

branch and bound is meant to avoid such exhaustive calculation in the first place.167

In the following, we present an upper bound that is effective in reducing the search space and is168

computable in O(m) time (with appropriate preprocessing). In the following, we present an upper169

bound on a single site that can be computed in constant time. The upper bound of the entire data170

is the product of the upper bound for all sites.171

For two nodes u,w ∈ Nodes(Tr) where LCA(u,w) = r, we let:172

B(u,w) = max[M1(v2),M1(u),M1(w),M3(child(r, v), v),M3(child(r, w), w),

M2(root(T ), r),M3(root(T ), r),
M2(r, v1)

Q(u)
,M2(child(r, w), w)Q(u),M1(w)Q(u)] (S6)

Here, v, v1, v2 and child(r, v) are the same as in Equation (3) of the main text (also see Fig.173

11 in the main text). Different from Equation (3), there is only w, but no w1 or w2 in Equation174

S6. We now argue that B(u,w) is an upper bound on the maximum Q′ value for the SPR move175

that prunes Tu and regraft it to somewhere within Tw. Equation S6 is closely related to Equation176

(3) (the exact maximum Q′ for the single SPR move shown in Fig.11 of main text). Intuitively,177

B(u,w) in Equation S6 is a relaxed version of the exact maximal probability of an SPR move in178

Equation (3): instead of specifying a single branch (w1, w2) to regraft, Equation S6 provides an179

upper bound on the posterior probability for a tree obtained by regrafting to any branch within180
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Tw. More specifically, Equation S6 and Equation (3) share the same eight terms. Equation S6 has181

two terms that are not in Equation (3):182

1. M1(w), which is the upper bound on the Q values for nodes inside Tw whose Q values are not183

changed by the SPR.184

2. M1(w)Q(u), which is the upper bound on the Q values for nodes inside Tw whose Q values185

are changed by the SPR.186

The other eight terms cover all the Q values outside Tw.187

For each u and w, computing B(u,w) takes constant time. This is because all the M1,M2 and188

M3 values have been pre-computed for the current tree. Recall that we may need to compute189

B(u,w) for each node w in T visited during the top-down recursive search. At each w, we may190

need to run Algorithm 3. Thus, computing B(u,w) takes the same time asymptotically as running191

Algorithm 3 for a single SPR move. That is, computing the bounds doesn’t slow down the tree192

search asymptotically. In practice, the bounds can significantly reduce the search space. Our193

experiments show that this branch and bound approach achieves significant speedup for the SPR194

local search. See Supplemental Table S1 for the empirical results on the performance of the branch195

and bound approach.196

S6 Initial tree construction197

Similar to ScisTree, ScisTree2 constructs the initial tree using neighbor joining. One key aspect198

for using neighbor joining is the estimation of the pairwise distance between genotypes of two199

cells. The original ScisTree used the Hamming distance of the called (i.e., fixed) genotypes as200

the pairwise distance between two cells. ScisTree2 uses a simple probabilistic pairwise distance201

which accommodates the uncertainty of genotypes. For two cells c1 and c2, we define the expected202

Hamming distance d(c1, c2) as:203

d(c1, c2) =

m∑
s=1

[M(c1, s) ∗ (1−M(c2, s)) + (1−M(c1, s)) ∗M(c2, s)] (S7)

We then use the expected pairwise Hamming distance for running neighbor joining. Our results204
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on simulation data (Supplemental Fig. S1) show that the initial trees constructed from the expected205

pairwise distance are more accurate than those from fixed genotypes.206

S7 Calculating the posterior probability of sequence reads simulated by Cell-207

Coal208

The data D simulated by CellCoal are in the form of sequence read counts for different alleles at209

each SNV site for each cell. CellCoal calculates the likelihood Pr(D|G). We focus on a single cell210

and a single SNV site. We now show how to calculate the posterior probability Pr(G|D) from211

Pr(D|G).212

There are four possible alleles, A, T, C and G. We encode these alleles as 0, 1, 2 and 3 for the213

four possible bases (A, T, C and G), where 0 is the wild-type allele. The single-cell genotype G214

has 10 possible values in CellCoal. We use the Bayes formula to calculate the posterior probability215

Pr(G|D) from the Pr(D|G) values in the VCF files generated by CellCoal:216

Pr(G|D) =
Pr(D|G)Pr(G)∑3

a1=0

∑3
a2=a1

Pr(D|G = {a1, a2})Pr(G = {a1, a2})
(S8)

The prior genotype probability Pr(G = {a1, a2}) is estimated by the Hardy-Weinberg equilib-217

rium: Pr(G = {a1, a1}) = f(a1)
2 and Pr(G = {a1, a2}) = 2f(a1)f(a2) (a1 ̸= a2), where f(a) is the218

allele frequency of the allele a. We assign posterior probability of 0.5 (i.e. the probability of being219

a wild type is the same as that of being a mutant) to positions without any reads in the genotype220

probability matrix.221

S8 Calculating likelihood and posterior probability from read counts for the222

HGSOC data223

The HGSOC data come with the sequence read counts for the called SNV sites. To calculate the224

posterior probability of genotypes from these raw read counts, we assume a fixed ADO rate θ as225
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0.2 and sequencing error rate ϵ as 0.01. The likelihood P (D|G) of the reads D at a site for a cell is:226

L(G) = Pr(D|G = {a1, a2})

= (1− θ)

Nr∏
i=1

Pr(ri|G = {a1, a2}) +
θ

2

Nr∏
i=1

Pr(ri|G = {a1,−}) +
θ

2

Nr∏
i=1

Pr(ri|G = {−, a2})

= (1− θ)

Nr∏
i=1

[
1

2
Pr(ri|a1) +

1

2
Pr(ri|a2)

]
+

θ

2

Nr∏
i=1

Pr(ri|a1) +
θ

2

Nr∏
i=1

Pr(ri|a2) (S9)

Pr(r|a) =


1− ϵ, if r = a

ϵ, if r ̸= a

(S10)

Gml = argmax
G

L(G) (S11)

where G is the genotype with two alleles a1 and a2, r is a read and Nr is the number of reads.227

The likelihood L(G) is to used as the inputs of CellPhy. The maximum likelihood genotypes Gml228

based on the calculated L(G) is used for HUNTRESS. The posterior probability of the genotypes229

for ScisTree2 can be computed by incorporating a prior on genotype probability using Equation230

(S8). Allele frequencies are estimated from the maximum likelihood genotypes.231

S9 Simulation of data by mixing the infinite site model and the finite site model232

We want to simulate data where a portion of sites follow the finite sites (FS) model. CellCoal233

offers an option to specify the proportion of sites under the FS model with a relative mutation rate234

compared to the average mutation rate. However, CellCoal does not produce the desired output235

directly; for instance, it does not explicitly report the number of FS model sites in the simulated236

data.237

To address this limitation, we utilize CellCoal to generate data and subsequently merge multiple238

sites into single sites to emulate the FS model. More specifically, if we aim to generate data with239

100 cells, 500 sites, and an FS model proportion of 0.2, we first use CellCoal to simulate 10,000240

sites under the infinite-site (IS) model, which is significantly more than the desired number of sites.241

We then retain the first 400 sites unchanged to represent IS model sites. For the remaining 100 FS242

model sites, we iteratively merge pairs of adjacent IS model sites until the total number of sites is243

reduced to 500.244
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S10 Robustness of the HGSOC data analysis245

There are several aspects that can complicate real data analysis. First, some real data may have246

more noise than the data we simulated before. Second, there is uncertainty in parameters used247

by ScisTree2 and other methods such as priors when analyzing real data. Such parameters may248

affect the analysis results. In the following, we investigate how robust analysis results from different249

methods can be on the real HGSOC data.250

Noise in the data. It is possible that some real data may have higher level of noise than the251

HGSOC data. To test how robust ScisTree2 works for data with more noise, we generate semi-252

simulated data by adding various level of noise into the HGSOC data. We test two ways of adding253

noises into the HGSOC data.254

1. Randomly adding or discarding reads. For each site for a cell, perturb its read count by a255

random number. The probability of changing the read count is the level of added noise. This256

is to simulate data with noises in read counts.257

2. Randomly masking the genotype probability to be 0.5 (i.e., becomes a missing value) for some258

site at a cell. Mask rate, the fraction of positions masked to be missing, is the level of added259

noise. This is to simulate data with large number of missing values.260

Uncertainty in parameters. To calculate the posterior probability from sequence reads, two261

parameters are required: the dropout rate and the genotype prior (Equation S9). In real data, there262

are uncertainty in these parameters. To evaluate the impact of such uncertainties, we conducted263

tests running ScisTree2, CellPhy, and HUNTRESS on the HGSOC dataset, employing various264

settings for these two parameters. Specifically, we tested dropout rates of 0.2, 0.5, and 0.75,265

alongside a non-informative prior that assigns equal probabilities to all genotypes. This resulted in266

six distinct combinations of dropout rates and priors.267

Experiments (Supplemental Fig. S3) show that ScisTree2 is robust across different parameter268

values. This indicates that extensive fine-tuning may not be required. We recommend selecting a269

dropout rate between 0.2 and 0.75.270

For genotype priors, we evaluate two approaches: (i) deriving priors from allele frequencies271

based on Hardy-Weinberg equilibrium and (ii) employing a non-informative prior, where genotype272

14



probabilities are set to 0.5. Our results indicate that the option (i) improves the overall inference273

accuracy. Therefore, for practical applications, we recommend using genotype priors computed274

from allele frequencies.275
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Supplemental Fig. S1: Accuracy of trees by neighbor joining with fixed276

genotypes vs. uncertain genotypes277
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Figure S1: Accuracy comparison of the neighbor joining (NJ) approach with ScisTree and ScisTree2. Top:
low coverage (1x). Bottom: high coverage (10x). X-axis: varying dropout rates. Y-axis: accuracy. NJ
performs reasonably well when the data has high coverage and low dropout rate. However, NJ performs
worse than ScisTree2 for data with lower quality.
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Supplemental Fig. S2: Simulation of adding noise in the data278
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Figure S2: Performance of ScisTree2 on semi-simulated data by adding noise to the HGSOC data using
the approach outlined in the Supplemental Methods. Left: making random changes to the alleles in the
read counts for certain percentage of positions. Right: randomly discarding certain fraction of genotype
probabilities. Y axis: F -score for AD and DL.
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Supplemental Fig. S3: Uncertainty in parameters for HGSOC data analysis279
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Figure S3: Robustness testing of the effect of parameter uncertainty by varying the ADO rate and genotype
priors for the HGSOC data analysis when running ScisTree2, CellPhy and HUNTRESS and NJ (see the
Supplemental Methods). AD/DL are used to assess accuracy. Top: varying dropout rates. Bottom: varying
the genotype prior: (i) prior calculated from allele frequency by Hardy-Weinberg equilibrium and (ii) non-
informative prior. With regards to dropout rates, ScisTree2 shows robustness across different parameter
values.
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Supplemental Fig. S4: Detailed running time of various methods280
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Figure S4: Comparison of the elapsed (user) and CPU running time between ScisTree2 and other methods
on simulated data with the varying numbers of cells and sites. Time is the elapsed time (in hours). 30
threads were used for methods supporting multi-threading. Methods that are too slow are not reported. n
is the number of cells. m is the number of sites.
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Supplemental Table S1: Speedup by Branch-and-Bound281

#Cell #Site Elapsed Time(secs) CPU Time(secs)
ScisTree2 (no BB) ScisTree2 Speedup ScisTree2 (no BB) ScisTree2 Speedup

100 500 1.57 1.07 1.47 7.09 2.52 2.81
200 200 3.31 1.89 1.75 11.98 3.92 3.06
200 400 4.14 2.35 1.76 24.13 6.67 3.62
200 1,000 7.43 4.13 1.80 77.07 15.32 5.03
200 2,000 11.71 6.46 1.81 161.15 24.48 6.58
500 2,500 79.41 30.77 2.58 1,575.94 140.27 11.24

1,000 5,000 673.17 161.61 4.17 15,631.39 930.22 16.80

Table S1: A comparison of CPU and elapsed time for ScisTree2 with and without the branch-and-bound (BB)
speedup. All tests were conducted using 30 threads. The branch and bound’s effect becomes more evident as the
number of cells increases.
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