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Supplemental Methods

S1 The probabilistic model of ScisTree

ScisTree2 and ScisTree share the same probabilistic model and the overall local search approach.
For better understanding of ScisTree2, we present the most important aspects of ScisTree here: the
probabilistic model and the algorithms. For more details, see Wu (2020).

The raw data for ScisTree and ScisTree2 are the sequence reads D. Suppose that we are to infer

the genotypes G. The maximum likelihood estimate G is:

G® = argmax Pr(D|G)
G

Finding G* by enumerating G using the above equation directly is infeasible when the number
of cells n and the number of sites m are not very small. CellPhy computes the likelihood Pr(D|T")
by incorporating the uncertainty of G at each leaf of T" using a modified version of the well-
known Felsenstein’s algorithm. One major computational difficulty for CellPhy’s likelihood is its
complexity: T has branch lengths, and Pr(D|T) needs to (implicitly) sum over all possible alleles at
internal nodes. This leads to a relatively complex probabilistic model. This is perhaps the reason
why CellPhy becomes slow for large number of cells (say 10,000) despite the fact that CellPhy
builds on top of RAXML-NG (Stamatakis| [2014)), one of the most well-engineered phylogenetic tree
inference tools. Moreover, CellPhy’s likelihood can not be easily extended to support the IS model.
The posterior probability model. ScisTree and ScisTree2 use the posterior probability of

genotypes G conditional on the given sequence reads D and the IS model:

Pr(G,I|D) 1

Pr(G|D, 1) = S —Fricn, 10) - =Pr(G,1|D) (S1)
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where [ is the event for the underlying mutations that satisfy the IS model. Note that C' is a

constant for a fixed D. Now,

Pr(G,I|D) = Pr(I|G, D)Pr(G|D) = Pr(I|G)Pr(G|D)

Here, Pr(I|G,D) = Pr(I|G) because for a fixed G, I and D are conditionally independent. If G
does not satisfy the IS model, then Pr(I|G) = 0. On the other hand, if G satisfies the IS model,
it is still possible that the IS model is violated: more than one mutation at a site may not lead to
an observable incompatibility with the IS model in G. For simplicity, we assume that Pr(I|G) =1
if G is compatible with the IS model. Therefore, we can restrict G to only those genotypes that

satisfy the IS model. Therefore, Equation [S1]is simplified for such G:

Pr(GID,T) = éPr(G|D)

In the following, for clarity we ignore this constant, and restrict our attention to genotypes that

satisfy the IS model. That is, for any G satisfying the IS model, the posterior probability

Pr(G|D,I) = Pr(G|D)

Optimization in ScisTree. ScisTree and ScisTree2 aim at finding the genotypes G* that maxi-

mizes the posterior probability where G* satisfies the infinite sites (IS) model:

G* = argmax Pr(G|D) = HHPT’ [, s]|D) (S52)
Geg! s=1c=1

where ¢ refers to a cell, s refers to an SNV site and G/ is the space of all genotypes that satisfy the
IS model. The above equation is due to the assumption of independence among the genotypes of
the cells. For a fixed G, the probability Pr(G|e, s]|D) in Equation [S2|is the posterior probability
of GJe, s] (the genotype of the cell ¢ at the site s being G|c, s])for D) and is computable from the
outputs of standard genotype callers.

Recall that we say G satisfy the IS model if there exists a (possibly multifurcating) phylogeny

T, called perfect phylogeny (Gusfield, 1991)), where leaves are labeled by the cells (rows) in G, and
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each column (site) ¢ of G labels a single branch of T' such that exactly the cells below this branch
are the mutants of ¢. Also note that under the IS model, G* uniquely identifies a rooted perfect
phylogeny. Thus after obtaining G*, we can use this perfect phylogeny as the underlying cell lineage
tree. However, it is known that finding G* is NP hard (Wu, 2020).

To overcome this computational difficulty, ScisTree made the following observation: if the un-
derlying (rooted and binary) tree T is given, then we only need to determine the best genotypes

conditional on T':

G*(T) = argmax Pr(G|D,T) (S3)
Geg!

The critical observation is that G*(7") can be easily determined for any given 7" in polynomial
time using algorithms in Sect. This is because there are only O(n) branches in T for placing
the (single) mutation for each site s. Once the mutation is placed for a site s, the genotypes at s for
all cells are determined, and the posterior probabilities of the genotypes can be computed. Thus,
for each site, we can simply examine each branch and place the mutation at the branch that gives
the largest posterior probability. Since we assume the genotypes of different sites are independent,
we can find the optimal genotypes of a site independently of other sites.

Since the underlying tree T is not known, ScisTree takes the local search approach to find the
optimal binary cell lineage tree 7% and G*(7T*): (i) construct an initial tree Ty, and (ii) iteratively
search for a tree T, by making a single tree rearrangement (say subtree prune and regraft) from
the current tree T,,_1 where T}, gives the largest posterior probability in Eq. Eventually T,
converges to a local optima 7%. Then we can determine G*(T™) from the optimal 7. Note that
the search space contains tree topologies and is thus discrete. Therefore, the local search must be

terminated.

S2 Algorithms of ScisTree

There are two main aspects of the ScisTree algorithm. First, it performs the nearest neighbor
interchange (NNT) local search. Here, an NNI operation swaps a subtree rooted at a node p with a

subtree rooted at a node g where ¢’s sibling is p’s parent. ScisTree computes the posterior probabil-
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ity of each tree within the 1-NNI neighborhood. Second, for each tree in the 1-NNI neighborhood,
ScisTree uses the following algorithm to compute the maximum posterior probability.

Suppose that we are given a rooted binary tree T'. We want to find the genotypes G* that satisfy
the IS model and maximize Pr(G*|D,T) where T is the underlying cell lineage tree. We denote
P(G*,T) = maxgeg: Pr(G|D,T) as the mazimum posterior probability of genotypes for T'. Recall
that under the IS model, the set of mutant genotypes at a site s corresponds to a subtree in T and
the single mutation occurs on the branch entering the subtree root. We define P; (G, T) for a site
s and a node v as the posterior probability of all genotypes at site s given that the mutation at s
occurs on the branch entering v. Since 7' is fixed, we can enumerate each subtree rooted at node v

and compute Ps, (G, T). The maximum probability Ps(G*,T) at site s is:

PS(G*a T) = mamvENodes(T)PS,v(Gv T) (84)

Here, Nodes(T') is the set of nodes in 7. Recall that for each cell ¢ and each site s, M]c, s]
is equal to the posterior probability of the cell ¢ having the wild-type genotype (0) at the site s.
Thus, the posterior probability of allele 0 (respectively 1) at the site s and the cell ¢ is M]e, s]

(respectively 1.0 — Mc, s]). Then, for each node v in T

Po(GT)= [] 0-Mew),s)x J] Mle(v),s] (S5)

u€Leaf(T,) v¢Leaf(T,)

Here T, refers to the subtree rooted at node v. Leaf(7},) is the set of leaves of T},. And c(u) is
the cell corresponding to a leaf u in T'.

Computing Ps (G, T) for each v directly from Equations [S4]and [S5{would lead to O(n?) time for
each site. A simple observation is that we can apply dynamic programming by taking a bottom-up
approach as follows. We define Qs(v) as the ratio of the probability of the genotypes within the
subtree T, being genotype 1 and the probability of these genotypes being genotype 0 at the site s.

That is (also see the main paper),

Qu(v) = H 1 — Mle, s]

Mle, s]
c€taxa(v)

Then, we have:
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P<G*7T) = H PS(G*7T) = H ([maxveNodes(T)Qs(v)] H M[C, S])

s=1..m s=1...m

The algorithm for computing Ps(G,T') based on Q(v) for a single site s for a fixed binary tree
T is given below, which has the running time of O(n). Computing P(G,T') involves calculating the

product of Ps(G,T) over each of m sites and thus takes O(mn) time.

Algorithm 1 Maximum probability computation of binary genotypes of a single SNV site s

for node v € T in the bottom-up order (i.e., leaves first) do

if v is a leaf then

1.0—M|[c(v),s]
Qs(v) < “Fle) ol

Let v; and v, being the two children of v.
Qs(v) — Qs(vl)Qs(vr)

end if
8: end for
9: Ps(Ga T) — maxveNodes(T)Qs(v) * chl,,,n M[C, 5]
10: return Py (G, T)

1:
2
3
4: else
5
6
7

S3 Detailed algorithms for the SPR local search in ScisTree2

For clarity, we provide detailed algorithms for performing the local SPR, search.
First, Algorithm [2]is for preprocessing. It computes the values of M7, My and Ms for each site
for the original tree T before performing any SPR moves. That is, Algorithm [2| only runs once

before each iteration of the local search.



Algorithm 2 Preprocessing step for computing M, 1, M, 2 and M, 3 values for a specific site s from pre-
computed Q4(u) values.

1:

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:

@ N DG Wy

for node u € T in the bottom-up order (i.e., leaves first) do
if u is a leaf then
M 1(u) <= Qs(u) > M 1(u): the largest Qs(v) for any v € nodes(T,,) at s.
else
Let u; and w, being the two children of u.
M@,l(u) — maX(Ms,l(ul)7 Ms,l(ur)a Qs (U))
end if
end for
> For a pair of nodes r and v € T}, M, 2(r,v): the largest Qs(u) along the path from r to v at s.
for node v € T do
M, 2(0,v) < Qu(v)
7w
while r # root(T) do
M, 2(p(r), v) < max(M, »(r, v), Q4 (1))
r < p(r)
end while
end for
> For a pair of nodes r and v € T, M 3(r,v): the largest Qs(u) for any node v within 7, but is neither
in T, and nor along the path from r to v.
for node v € T do
M, 3(v,v) < —00
v
while r # root(T) do
w < sibling(r)
M, 5(p(r),v) < max(M; s(r,v), My 1(w))
r < p(r)
end while
end for

113

Algorithm [3|is to find the maximum posterior probability for a tree T” within 1-SPR neighbor-

us hood of the current tree 7. That is, Algorithm [3| runs for a new tree obtained from some SPR

us operation.
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Algorithm 3 Finding the tree with the maximum probability within one SPR move from the current tree
T. Return the maximum posterior probability.

1: fors=1...m do
2:  Compute Qs (u) values for each node u in T and the site s using the probability computation algorithm
in the original ScisTree.

3:  Compute M1, Mo and M; 3 values for the site s using Algorithm

4: end for
> Consider each rSPR move involving pruning a subtree T, and regraft s.t. T,, becomes a sibling of the
node v

5: Ppaz ¢ —00

6: for node v € T do

7. for node we € T s.t. w,, ¢ T, do

8: vy — sibling(u), v < p(u), v1 + p(v), wy + p(ws)

9: P+1

10: fors=1...m do

11: Mg  max(M, 1 (v2), Mq 1 (u), Mgy (ws)), 22)

12: Mp < max(M; o(r, w2)Qs(u), My 3(child(r,v),v))

13: Me  max(M; 3(child(r,wy),wy), Mg 3(root(T),r))

14: P« Psxmax(Ma, Mg, Mc) *[[._, Mle, s]

15: end for

16: Priox = max(Praqz, P)

17:  end for

18: end for

19: return P,qz

S4 Correctness of Algorithm |3| for evaluating one SPR move for a single site

The key for the correctness of Algorithm [3]is that the ) values at tree nodes before and after the
SPR move are highly correlated. This can be seen by carefully analyzing cases for Q'(z) for nodes
' in T" as illustrated in Fig. 11 (main text). @' refers to the @ values after the SPR move. ) and

Q' are equal for many nodes, while are different in some other nodes. We have the following cases.

1. Q' (z) = Q(x) for the node x that is outside the cycle formed by the paths r — v, r — w,

v — uw and w — u corresponding to the SPR move. There are the following cases for .

(a) x is within a subtree below vy, u and we; their maximum @ values are the pre-computed
M (v2), M1(u) and M (we) respectively (the first three terms in Equation (3) of the main
text).

(b) x is within a subtree whose root v, is the child of some node on the path » — v or the
path r — w but v, itself is not on these two paths. The maximum () values for such
nodes are Ms(child(r,v),v) and Ms(child(r,w),w) respectively (the 4th and 5th terms

in Equation (3) of the main text).
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(¢) = is along the path from root(T) to r, whose maximum @ value is Ma(root(T),r) (the

6th term in Equation (3)).

(d) z is outside the subtree rooted at r, whose maximum @ value is the pre-computed

Ms(root(T'),r) (the 7th term in Equation (3)).
2. Q'(z) # Q(x) for a node x where z is on the path r — vy or the path r — w;.

(a) z € r = v1. Q'(x) is equal to Q(z) divided by Q(u) after the SPR (the 8th term in
Equation (3)). This is because @' is for the tree after the SPR, where the leaves within

T, are pruned (i.e., absent from T, after the SPR).

(b) x € r — wi. Q'(x) is equal to Q(x) multiplied by Q(u) (the 9th term in Equation (3)).
This is after the SPR, the leaves within T, are regrafted (i.e., inserted into T, after the

SPR).

Algorithm [3| calculates the maximum of these nine cases for each site, which is equal to the
maximum @ values at all nodes in 7" after the SPR move. Algorithm [3| then returns the product
of these maximum values over all sites. Thus, this algorithm correctly computes the maximum

posterior probability P(T”) after a specific SPR move.

S5 The branch and bound approach

We now describe the details of the branch and bound approach. To simplify the exposition, we
focus on one SNV site: the upper bound for multiple sites is the product of the bounds of individual
sites. For each node u, we consider each ancestor r of u. We let w be a descendant node of r where
LCA(u,w) = r. Recall that LC'A(u,w) is the lowest common ancestor of v and w in the tree. We
consider each w in the top-down order. Initially, w is set to wq, the child of r that is not ancestral
to u (i.e., wy is the root of the subtree right under r not containing u). Then we move downwards
from wyq to leaves. Throughout the search, we keep track of the maximal @)’ value so far, denoted as
Q,,,. For each node w, we calculate B(u,w), an upper bound on the maximum @’ values among all
SPR moves that prune T, to somewhere within T,,. Here, w is considered to be within T;,. There

are two cases in this recursive search.

1. If B(u,w) < @), then there are no SPR moves within T, that gives higher @’ values than
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Q. and the entire subtree T,, can be discarded. That is, any SPR operations that regraft T,

to be inside T, are ignored. This can lead to significant savings of computation.

2. Otherwise, we calculate the @’ value for the SPR operation that regrafts T, onto the branch
that enters w using Algorithm (3 If Q' > @), we let Q), <+ Q'. Regardless whether Q/,

value is updated, we recursively process the two subtrees of w if w is an internal node, and

terminate if w is a leaf.

Obviously, to obtain large speedup, choosing a strong B(u, w) bound is critical. The best B(u, w)
bound is the exact maximum posterior probability obtained from trees generated by all SPRs that
regraft T, to be inside T,,. But computing this exact maximum will not lead to any speed up:
calculating this maximum would need to run Algorithm [3] for all possible SPRs within T,,; but the
branch and bound is meant to avoid such exhaustive calculation in the first place.

In the following, we present an upper bound that is effective in reducing the search space and is
computable in O(m) time (with appropriate preprocessing). In the following, we present an upper
bound on a single site that can be computed in constant time. The upper bound of the entire data
is the product of the upper bound for all sites.

For two nodes u,w € Nodes(7}.) where LC A(u,w) = r, we let:

B(u,w) = max[Mj(ve), M1 (u), My (w), M3(child(r,v),v), M3(child(r, w), w),
MQ (’I“, Ul)

My(root(T), ), My(root(T), ), =5

, Ma(child(r, w), w)Q(u), Mi(w)Q(w)]  (S6)

Here, v,v1,v and child(r,v) are the same as in Equation (3) of the main text (also see Fig.
11 in the main text). Different from Equation (3), there is only w, but no w; or wy in Equation
We now argue that B(u,w) is an upper bound on the maximum @’ value for the SPR move
that prunes T, and regraft it to somewhere within 7,,. Equation [S6]is closely related to Equation
(3) (the exact maximum @’ for the single SPR move shown in Fig.11 of main text). Intuitively,
B(u,w) in Equation is a relaxed version of the exact maximal probability of an SPR move in
Equation (3): instead of specifying a single branch (wy,w2) to regraft, Equation [S6| provides an

upper bound on the posterior probability for a tree obtained by regrafting to any branch within

10
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T,. More specifically, Equation |[S6| and Equation (3) share the same eight terms. Equation |S6| has

two terms that are not in Equation (3):

1. Mj(w), which is the upper bound on the @ values for nodes inside T, whose @ values are not

changed by the SPR.

2. M;(w)Q(u), which is the upper bound on the @ values for nodes inside T, whose @ values
are changed by the SPR.

The other eight terms cover all the ) values outside T,,.

For each u and w, computing B(u,w) takes constant time. This is because all the Mj, My and
M3 values have been pre-computed for the current tree. Recall that we may need to compute
B(u,w) for each node w in T visited during the top-down recursive search. At each w, we may
need to run Algorithm |3| Thus, computing B(u,w) takes the same time asymptotically as running
Algorithm [3] for a single SPR move. That is, computing the bounds doesn’t slow down the tree
search asymptotically. In practice, the bounds can significantly reduce the search space. Our
experiments show that this branch and bound approach achieves significant speedup for the SPR
local search. See Supplemental Table [S1|for the empirical results on the performance of the branch

and bound approach.

S6 Initial tree construction

Similar to ScisTree, ScisTree2 constructs the initial tree using neighbor joining. One key aspect
for using neighbor joining is the estimation of the pairwise distance between genotypes of two
cells. The original ScisTree used the Hamming distance of the called (i.e., fixed) genotypes as
the pairwise distance between two cells. ScisTree2 uses a simple probabilistic pairwise distance
which accommodates the uncertainty of genotypes. For two cells ¢; and co, we define the expected

Hamming distance d(cqp, c2) as:

d(ci, o) = Z[M(Ch s)x (1 — M(co,s))+ (1 — M(cq,8)) * M(ca, s)] (S7)

s=1

We then use the expected pairwise Hamming distance for running neighbor joining. Our results

11



205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

on simulation data (Supplemental Fig. show that the initial trees constructed from the expected

pairwise distance are more accurate than those from fixed genotypes.

S7 Calculating the posterior probability of sequence reads simulated by Cell-
Coal

The data D simulated by CellCoal are in the form of sequence read counts for different alleles at
each SNV site for each cell. CellCoal calculates the likelihood Pr(D|G). We focus on a single cell
and a single SNV site. We now show how to calculate the posterior probability Pr(G|D) from
Pr(D|G).

There are four possible alleles, A, T, C and G. We encode these alleles as 0,1,2 and 3 for the
four possible bases (A, T, C and G), where 0 is the wild-type allele. The single-cell genotype G
has 10 possible values in CellCoal. We use the Bayes formula to calculate the posterior probability

Pr(G|D) from the Pr(D|G) values in the VCF files generated by CellCoal:

Pr(D|G)Pr(G)

D) = S S B (DIG = {ar,a2)) PG = {ar, @)

(S8)

The prior genotype probability Pr(G = {a1,a2}) is estimated by the Hardy-Weinberg equilib-
rium: Pr(G = {a1,a1}) = f(a1)? and Pr(G = {a1,a2}) = 2f(a1)f(a2) (a1 # az), where f(a) is the
allele frequency of the allele a. We assign posterior probability of 0.5 (i.e. the probability of being
a wild type is the same as that of being a mutant) to positions without any reads in the genotype

probability matrix.

S8 Calculating likelihood and posterior probability from read counts for the
HGSOC data

The HGSOC data come with the sequence read counts for the called SNV sites. To calculate the

posterior probability of genotypes from these raw read counts, we assume a fixed ADO rate 0 as

12
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0.2 and sequencing error rate € as 0.01. The likelihood P(D|G) of the reads D at a site for a cell is:

L(G) = Pr(D|G = {a1,a2})

N, N, N,
= =0T PreriG = foneah) +  TTPrivi = fon )+ S TT i = (- aa)
N, 1 1 9 N, 9 N,
=(1-0) H1 [QPr(rﬂal) + QPT(WW)} +3 }_IIPT(Ti|a1) +3 il_[lPr(rAaz) (59)
1—¢ ifr=a
Pr(rla) = (S10)
€, ifr£a
G = argmax L(Q) (S11)
G

where G is the genotype with two alleles a; and ag, r is a read and N, is the number of reads.
The likelihood L(G) is to used as the inputs of CellPhy. The maximum likelihood genotypes G,
based on the calculated L(G) is used for HUNTRESS. The posterior probability of the genotypes
for ScisTree2 can be computed by incorporating a prior on genotype probability using Equation

. Allele frequencies are estimated from the maximum likelihood genotypes.

S9 Simulation of data by mixing the infinite site model and the finite site model

We want to simulate data where a portion of sites follow the finite sites (FS) model. CellCoal
offers an option to specify the proportion of sites under the FS model with a relative mutation rate
compared to the average mutation rate. However, CellCoal does not produce the desired output
directly; for instance, it does not explicitly report the number of F'S model sites in the simulated
data.

To address this limitation, we utilize CellCoal to generate data and subsequently merge multiple
sites into single sites to emulate the FS model. More specifically, if we aim to generate data with
100 cells, 500 sites, and an FS model proportion of 0.2, we first use CellCoal to simulate 10,000
sites under the infinite-site (IS) model, which is significantly more than the desired number of sites.
We then retain the first 400 sites unchanged to represent IS model sites. For the remaining 100 F'S
model sites, we iteratively merge pairs of adjacent IS model sites until the total number of sites is

reduced to 500.

13
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S10 Robustness of the HGSOC data analysis

There are several aspects that can complicate real data analysis. First, some real data may have
more noise than the data we simulated before. Second, there is uncertainty in parameters used
by ScisTree2 and other methods such as priors when analyzing real data. Such parameters may
affect the analysis results. In the following, we investigate how robust analysis results from different
methods can be on the real HGSOC data.

Noise in the data. It is possible that some real data may have higher level of noise than the
HGSOC data. To test how robust ScisTree2 works for data with more noise, we generate semi-
simulated data by adding various level of noise into the HGSOC data. We test two ways of adding
noises into the HGSOC data.

1. Randomly adding or discarding reads. For each site for a cell, perturb its read count by a
random number. The probability of changing the read count is the level of added noise. This

is to simulate data with noises in read counts.

2. Randomly masking the genotype probability to be 0.5 (i.e., becomes a missing value) for some
site at a cell. Mask rate, the fraction of positions masked to be missing, is the level of added

noise. This is to simulate data with large number of missing values.

Uncertainty in parameters. To calculate the posterior probability from sequence reads, two
parameters are required: the dropout rate and the genotype prior (Equation. In real data, there
are uncertainty in these parameters. To evaluate the impact of such uncertainties, we conducted
tests running ScisTree2, CellPhy, and HUNTRESS on the HGSOC dataset, employing various
settings for these two parameters. Specifically, we tested dropout rates of 0.2, 0.5, and 0.75,
alongside a non-informative prior that assigns equal probabilities to all genotypes. This resulted in
six distinct combinations of dropout rates and priors.

Experiments (Supplemental Fig. [S3|) show that ScisTree2 is robust across different parameter
values. This indicates that extensive fine-tuning may not be required. We recommend selecting a
dropout rate between 0.2 and 0.75.

For genotype priors, we evaluate two approaches: (i) deriving priors from allele frequencies

based on Hardy-Weinberg equilibrium and (ii) employing a non-informative prior, where genotype

14



2z probabilities are set to 0.5. Our results indicate that the option (i) improves the overall inference
o accuracy. Therefore, for practical applications, we recommend using genotype priors computed

s from allele frequencies.
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= Supplemental Fig. S1: Accuracy of trees by neighbor joining with fixed

277

genotypes vs. uncertain genotypes

Comparison of two Neighbor Joining in ScisTree and ScisTree2 (#cell=200, #site=1000, #coverage=1)

0.99 == = 0.30 ©
fe) ¢}
g 098 E% e o?{- © Qﬁ l 0251
il S
3 0.971 = o © 0.20 © o
< = 3
1 o o ]
g 096 o 2 Sos o8
>
£0.95 8 0.10 é Q i i
c =
@ 0.94 1 o
§ £ | s @
FaNal
0.93 1 0.00 1 %o )
0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 02 0.5 0.6
5 o
&% 0.704 5 lﬁ 000
3 G 0.8 0000
2 L
0.65 1
g A CE ===
5 o % 0000 000
Q 0.601 <
8 T';, 0.6 o
T f=s
5 0.55 o
k7 Q
i ° £ o054
£ 0.50 0© a 00,0
2 . . . . . . . . . . . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Dropout Rate Dropout Rate
I ScisTree(N)) [ ScisTree2(N)) [ ScisTree B ScisTree2 ]

Comparison of two Neighbor Joining in ScisTree and ScisTree2 (#cell=200, #site=1000, #coverage=10)

0.998{ B= é?. il - - 0.6 1

g = &% = 0.5 =

© 0.996 oﬂ d;l = 50 =

3

4 © o]
Q 0.994 -{1 Soaf g
o o]

© 0.992 v} o

Q o B < 0.31
2 0.990 o

: r
3 0.988 - o
0.986 1 011
O
" " : " : . . 0.0 . o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0

i

g

S cooo0 o 094

% 0.744 %000 0000 =

e g

2 === { Cees

2 0.70 2

§ o0 § o7

fou] o pm | 1Y) mEm

[a} o 1 0ooo0

L 0.66 ®s0 g 06

o pus

2 oo 5

$ 0.64 [eXe) £ 054

9 o o 0000
2 : " : " : " : : " : " " : "

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Dropout Rate

I ScisTree(N)) [ ScisTree2(NJ) [ ScisTree =] ScisTreeZJ

Figure S1: Accuracy comparison of the neighbor joining (NJ) approach with ScisTree and ScisTree2. Top:
varying dropout rates.
performs reasonably well when the data has high coverage and low dropout rate. However, NJ performs

low coverage (1x). Bottom: high coverage (10x). X-axis:

worse than ScisTree2 for data with lower quality.
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s Supplemental Fig. S2: Simulation of adding noise in the data
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Figure S2: Performance of ScisTree2 on semi-simulated data by adding noise to the HGSOC data using
the approach outlined in the Supplemental Methods. Left: making random changes to the alleles in the
read counts for certain percentage of positions. Right: randomly discarding certain fraction of genotype
probabilities. Y axis: F-score for AD and DL.
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o Supplemental Fig. S3: Uncertainty in parameters for HGSOC data analysis

Comparison on HGSOC with various dropout rates
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Figure S3: Robustness testing of the effect of parameter uncertainty by varying the ADO rate and genotype
priors for the HGSOC data analysis when running ScisTree2, CellPhy and HUNTRESS and NJ (see the
Supplemental Methods). AD/DL are used to assess accuracy. Top: varying dropout rates. Bottom: varying
the genotype prior: (i) prior calculated from allele frequency by Hardy-Weinberg equilibrium and (ii) non-

informative prior.
values.
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» Supplemental Fig. S4: Detailed running time of various methods

Running time under different settings
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Figure S4: Comparison of the elapsed (user) and CPU running time between ScisTree2 and other methods
on simulated data with the varying numbers of cells and sites. Time is the elapsed time (in hours). 30
threads were used for methods supporting multi-threading. Methods that are too slow are not reported. n
is the number of cells. m is the number of sites.
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»  Supplemental Table S1: Speedup by Branch-and-Bound

#Cell  #Site Elapsed Time(secs) CPU Time(secs)
ScisTree2 (no BB) ScisTree2 Speedup ScisTree2 (no BB) ScisTree2 Speedup
100 500 1.57 1.07 1.47 7.09 2.52 2.81
200 200 3.31 1.89 1.75 11.98 3.92 3.06
200 400 4.14 2.35 1.76 24.13 6.67 3.62
200 1,000 7.43 4.13 1.80 77.07 15.32 5.03
200 2,000 11.71 6.46 1.81 161.15 24.48 6.58
500 2,500 79.41 30.77 2.58 1,575.94 140.27 11.24
1,000 5,000 673.17 161.61 4.17 15,631.39 930.22 16.80

Table S1: A comparison of CPU and elapsed time for ScisTree2 with and without the branch-and-bound (BB)
speedup. All tests were conducted using 30 threads. The branch and bound’s effect becomes more evident as the
number of cells increases.

20



282

283

284

285

286

287

288

289

290

291

292

Supplemental References

Gustield D. 1991. Efficient algorithms for inferring evolutionary history. Networks, 21(1):19-28.

Kozlov A, Alves JM, Stamatakis A, Posada D. 2022. Cellphy: accurate and fast probabilistic

inference of single-cell phylogenies from scdna-seq data. Genome Biology, 23:37.

Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, Vilar E, Maru D, Kopetz S, Navin NE.
2017. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal

cancer. Genome research, 27(8):1287-1299.

Stamatakis A. 2014. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large

phylogenies. Bioinformatics, 30(9):1312-1313.

Wu Y. 2020. Accurate and efficient cell lineage tree inference from noisy single cell data: the

maximum likelihood perfect phylogeny approach. Bioinformatics, 36(3):742-750.

21



	Supplemental Methods
	The probabilistic model of ScisTree
	Algorithms of ScisTree
	Detailed algorithms for the SPR local search in ScisTree2
	Correctness of Algorithm 3 for evaluating one SPR move for a single site
	The branch and bound approach
	Initial tree construction
	Calculating the posterior probability of sequence reads simulated by CellCoal 
	Calculating likelihood and posterior probability from read counts for the HGSOC data
	Simulation of data by mixing the infinite site model and the finite site model
	Robustness of the HGSOC data analysis

	Supplemental Fig. S1: Accuracy of trees by neighbor joining with fixed genotypes vs. uncertain genotypes
	Supplemental Fig. S2: Simulation of adding noise in the data
	Supplemental Fig. S3: Uncertainty in parameters for HGSOC data analysis
	Supplemental Fig. S4: Detailed running time of various methods
	Supplemental Table S1: Speedup by Branch-and-Bound
	Supplemental References


