

¹ List of Supplemental Materials for “ScisTree2 enables large-scale inference of
² cell lineage trees and genotype calling using efficient local search”

³ Supplemental Methods	2
⁴ S1 The probabilistic model of ScisTree	2
⁵ S2 Algorithms of ScisTree	4
⁶ S3 Detailed algorithms for the SPR local search in ScisTree2	6
⁷ S4 Correctness of Algorithm 3 for evaluating one SPR move for a single site	8
⁸ S5 The branch and bound approach	9
⁹ S6 Initial tree construction	11
¹⁰ S7 Calculating the posterior probability of sequence reads simulated by CellCoal	12
¹¹ S8 Calculating likelihood and posterior probability from read counts for the HGSOC data	12
¹² S9 Simulation of data by mixing the infinite site model and the finite site model	13
¹³ S10 Robustness of the HGSOC data analysis	14
¹⁴ Supplemental Fig. S1: Accuracy of trees by neighbor joining with fixed genotypes	
¹⁵ vs. uncertain genotypes	16
¹⁶ Supplemental Fig. S2: Simulation of adding noise in the data	17
¹⁷ Supplemental Fig. S3: Uncertainty in parameters for HGSOC data analysis	18
¹⁸ Supplemental Fig. S4: Detailed running time of various methods	19
¹⁹ Supplemental Table S1: Speedup by Branch-and-Bound	20
²⁰ Supplemental References	21

²¹ **Supplemental Methods**

²² **S1 The probabilistic model of ScisTree**

²³ ScisTree2 and ScisTree share the same probabilistic model and the overall local search approach.

²⁴ For better understanding of ScisTree2, we present the most important aspects of ScisTree here: the
²⁵ probabilistic model and the algorithms. For more details, see Wu (2020).

²⁶ The raw data for ScisTree and ScisTree2 are the sequence reads D . Suppose that we are to infer
²⁷ the genotypes G . The maximum likelihood estimate G^a is:

$$G^a = \operatorname{argmax}_G \Pr(D|G)$$

²⁸ Finding G^a by enumerating G using the above equation directly is infeasible when the number
²⁹ of cells n and the number of sites m are not very small. CellPhy computes the likelihood $\Pr(D|T)$
³⁰ by incorporating the uncertainty of G at each leaf of T using a modified version of the well-
³¹ known Felsenstein's algorithm. One major computational difficulty for CellPhy's likelihood is its
³² complexity: T has branch lengths, and $\Pr(D|T)$ needs to (implicitly) sum over all possible alleles at
³³ internal nodes. This leads to a relatively complex probabilistic model. This is perhaps the reason
³⁴ why CellPhy becomes slow for large number of cells (say 10,000) despite the fact that CellPhy
³⁵ builds on top of RAxML-NG (Stamatakis, 2014), one of the most well-engineered phylogenetic tree
³⁶ inference tools. Moreover, CellPhy's likelihood can not be easily extended to support the IS model.

³⁷ **The posterior probability model.** ScisTree and ScisTree2 use the *posterior* probability of
³⁸ genotypes G conditional on the given sequence reads D and the IS model:

$$\Pr(G|D, I) = \frac{\Pr(G, I|D)}{\sum_{G_1} \Pr(G_1, I|D)} = \frac{1}{C} \Pr(G, I|D) \quad (\text{S1})$$

39 where I is the event for the underlying mutations that satisfy the IS model. Note that C is a
 40 constant for a fixed D . Now,

$$Pr(G, I|D) = Pr(I|G, D)Pr(G|D) = Pr(I|G)Pr(G|D)$$

41 Here, $Pr(I|G, D) = Pr(I|G)$ because for a fixed G , I and D are conditionally independent. If G
 42 does not satisfy the IS model, then $Pr(I|G) = 0$. On the other hand, if G satisfies the IS model,
 43 it is still possible that the IS model is violated: more than one mutation at a site may not lead to
 44 an observable incompatibility with the IS model in G . For simplicity, we *assume* that $Pr(I|G) = 1$
 45 if G is compatible with the IS model. Therefore, we can restrict G to only those genotypes that
 46 satisfy the IS model. Therefore, Equation S1 is simplified for such G :

$$Pr(G|D, I) = \frac{1}{C}Pr(G|D)$$

47 In the following, for clarity we ignore this constant, and restrict our attention to genotypes that
 48 satisfy the IS model. That is, for any G satisfying the IS model, the posterior probability

$$Pr(G|D, I) = Pr(G|D)$$

49 **Optimization in ScisTree.** ScisTree and ScisTree2 aim at finding the genotypes G^* that maxi-
 50 mizes the posterior probability where G^* satisfies the infinite sites (IS) model:

$$G^* = \operatorname{argmax}_{G \in \mathcal{G}^I} Pr(G|D) = \prod_{s=1}^m \prod_{c=1}^n Pr(G[c, s]|D) \quad (\text{S2})$$

51 where c refers to a cell, s refers to an SNV site and \mathcal{G}^I is the space of all genotypes that satisfy the
 52 IS model. The above equation is due to the assumption of independence among the genotypes of
 53 the cells. For a fixed G , the probability $Pr(G[c, s]|D)$ in Equation S2 is the *posterior* probability
 54 of $G[c, s]$ (the genotype of the cell c at the site s being $G[c, s]$) for D) and is computable from the
 55 outputs of standard genotype callers.

56 Recall that we say G satisfy the IS model if there exists a (possibly multifurcating) phylogeny
 57 T , called *perfect phylogeny* (Gusfield, 1991), where leaves are labeled by the cells (rows) in G , and

58 each column (site) c of G labels a single branch of T such that exactly the cells below this branch
 59 are the mutants of c . Also note that under the IS model, G^* *uniquely* identifies a rooted perfect
 60 phylogeny. Thus after obtaining G^* , we can use this perfect phylogeny as the underlying cell lineage
 61 tree. However, it is known that finding G^* is NP hard (Wu, 2020).

62 To overcome this computational difficulty, ScisTree made the following observation: if the un-
 63 derlying (rooted and binary) tree T is *given*, then we only need to determine the best genotypes
 64 conditional on T :

$$G^*(T) = \operatorname{argmax}_{G \in \mathcal{G}^I} Pr(G|D, T) \quad (\text{S3})$$

65 The critical observation is that $G^*(T)$ can be easily determined for any given T in polynomial
 66 time using algorithms in Sect. S2. This is because there are only $O(n)$ branches in T for placing
 67 the (single) mutation for each site s . Once the mutation is placed for a site s , the genotypes at s for
 68 all cells are determined, and the posterior probabilities of the genotypes can be computed. Thus,
 69 for each site, we can simply examine each branch and place the mutation at the branch that gives
 70 the largest posterior probability. Since we assume the genotypes of different sites are independent,
 71 we can find the optimal genotypes of a site independently of other sites.

72 Since the underlying tree T is not known, ScisTree takes the local search approach to find the
 73 optimal binary cell lineage tree T^* and $G^*(T^*)$: (i) construct an initial tree T_0 , and (ii) iteratively
 74 search for a tree T_m by making a single tree rearrangement (say subtree prune and regraft) from
 75 the current tree T_{m-1} where T_m gives the largest posterior probability in Eq. S3. Eventually T_m
 76 converges to a local optima T^* . Then we can determine $G^*(T^*)$ from the optimal T^* . Note that
 77 the search space contains tree topologies and is thus discrete. Therefore, the local search must be
 78 terminated.

79 S2 Algorithms of ScisTree

80 There are two main aspects of the ScisTree algorithm. First, it performs the nearest neighbor
 81 interchange (NNI) local search. Here, an NNI operation swaps a subtree rooted at a node p with a
 82 subtree rooted at a node q where q 's sibling is p 's parent. ScisTree computes the posterior probabil-

83 ity of each tree within the 1-NNI neighborhood. Second, for each tree in the 1-NNI neighborhood,
 84 ScisTree uses the following algorithm to compute the maximum posterior probability.

85 Suppose that we are given a rooted binary tree T . We want to find the genotypes G^* that satisfy
 86 the IS model and maximize $Pr(G^*|D, T)$ where T is the underlying cell lineage tree. We denote
 87 $P(G^*, T) = \max_{G \in \mathcal{G}^I} Pr(G|D, T)$ as the *maximum* posterior probability of genotypes for T . Recall
 88 that under the IS model, the set of mutant genotypes at a site s corresponds to a subtree in T and
 89 the single mutation occurs on the branch entering the subtree root. We define $P_{s,v}(G, T)$ for a site
 90 s and a node v as the posterior probability of all genotypes at site s given that the mutation at s
 91 occurs on the branch entering v . Since T is fixed, we can enumerate each subtree rooted at node v
 92 and compute $P_{s,v}(G, T)$. The maximum probability $P_s(G^*, T)$ at site s is:

$$P_s(G^*, T) = \max_{v \in \text{Nodes}(T)} P_{s,v}(G, T) \quad (\text{S4})$$

93 Here, $\text{Nodes}(T)$ is the set of nodes in T . Recall that for each cell c and each site s , $M[c, s]$
 94 is equal to the *posterior* probability of the cell c having the *wild-type* genotype (0) at the site s .
 95 Thus, the posterior probability of allele 0 (respectively 1) at the site s and the cell c is $M[c, s]$
 96 (respectively $1.0 - M[c, s]$). Then, for each node v in T :

$$P_{s,v}(G, T) = \prod_{u \in \text{Leaf}(T_v)} (1.0 - M[c(u), s]) \times \prod_{v \notin \text{Leaf}(T_v)} M[c(v), s] \quad (\text{S5})$$

97 Here T_v refers to the subtree rooted at node v . $\text{Leaf}(T_v)$ is the set of leaves of T_v . And $c(u)$ is
 98 the cell corresponding to a leaf u in T .

99 Computing $P_{s,v}(G, T)$ for each v directly from Equations S4 and S5 would lead to $O(n^2)$ time for
 100 each site. A simple observation is that we can apply dynamic programming by taking a bottom-up
 101 approach as follows. We define $Q_s(v)$ as the *ratio* of the probability of the genotypes within the
 102 subtree T_v being genotype 1 and the probability of these genotypes being genotype 0 at the site s .
 103 That is (also see the main paper),

$$Q_s(v) = \prod_{c \in \text{taxa}(v)} \frac{1 - M[c, s]}{M[c, s]}$$

104 Then, we have:

$$P(G^*, T) = \prod_{s=1 \dots m} P_s(G^*, T) = \prod_{s=1 \dots m} \left([max_{v \in \text{Nodes}(T)} Q_s(v)] \prod_{c=1 \dots n} M[c, s] \right)$$

105 The algorithm for computing $P_s(G, T)$ based on $Q(v)$ for a single site s for a fixed binary tree
 106 T is given below, which has the running time of $O(n)$. Computing $P(G, T)$ involves calculating the
 107 product of $P_s(G, T)$ over each of m sites and thus takes $O(mn)$ time.

Algorithm 1 Maximum probability computation of binary genotypes of a single SNV site s

```

1: for node  $v \in T$  in the bottom-up order (i.e., leaves first) do
2:   if  $v$  is a leaf then
3:      $Q_s(v) \leftarrow \frac{1.0 - M[c(v), s]}{M[c(v), s]}$ 
4:   else
5:     Let  $v_l$  and  $v_r$  being the two children of  $v$ .
6:      $Q_s(v) \leftarrow Q_s(v_l)Q_s(v_r)$ 
7:   end if
8: end for
9:  $P_s(G, T) \leftarrow max_{v \in \text{Nodes}(T)} Q_s(v) * \prod_{c=1 \dots n} M[c, s]$ 
10: return  $P_s(G, T)$ 
```

108 **S3 Detailed algorithms for the SPR local search in ScisTree2**

109 For clarity, we provide detailed algorithms for performing the local SPR search.

110 First, Algorithm 2 is for *preprocessing*. It computes the values of M_1 , M_2 and M_3 for each site
 111 for the original tree T *before* performing any SPR moves. That is, Algorithm 2 only runs once
 112 before each iteration of the local search.

Algorithm 2 Preprocessing step for computing $M_{s,1}$, $M_{s,2}$ and $M_{s,3}$ values for a specific site s from pre-computed $Q_s(u)$ values.

```

1: for node  $u \in T$  in the bottom-up order (i.e., leaves first) do
2:   if  $u$  is a leaf then
3:      $M_{s,1}(u) \leftarrow Q_s(u)$   $\triangleright M_{s,1}(u)$ : the largest  $Q_s(v)$  for any  $v \in \text{nodes}(T_u)$  at  $s$ .
4:   else
5:     Let  $u_l$  and  $u_r$  being the two children of  $u$ .
6:      $M_{s,1}(u) \leftarrow \max(M_{s,1}(u_l), M_{s,1}(u_r), Q_s(u))$ 
7:   end if
8: end for
   $\triangleright$  For a pair of nodes  $r$  and  $v \in T_r$ ,  $M_{s,2}(r, v)$ : the largest  $Q_s(u)$  along the path from  $r$  to  $v$  at  $s$ .
9: for node  $v \in T$  do
10:    $M_{s,2}(v, v) \leftarrow Q_s(v)$ 
11:    $r \leftarrow v$ 
12:   while  $r \neq \text{root}(T)$  do
13:      $M_{s,2}(p(r), v) \leftarrow \max(M_{s,2}(r, v), Q_s(v))$ 
14:      $r \leftarrow p(r)$ 
15:   end while
16: end for
   $\triangleright$  For a pair of nodes  $r$  and  $v \in T_r$ ,  $M_{s,3}(r, v)$ : the largest  $Q_s(u)$  for any node  $u$  within  $T_r$  but is neither
  in  $T_v$  and nor along the path from  $r$  to  $v$ .
17: for node  $v \in T$  do
18:    $M_{s,3}(v, v) \leftarrow -\infty$ 
19:    $r \leftarrow v$ 
20:   while  $r \neq \text{root}(T)$  do
21:      $w \leftarrow \text{sibling}(r)$ 
22:      $M_{s,3}(p(r), v) \leftarrow \max(M_{s,3}(r, v), M_{s,1}(w))$ 
23:      $r \leftarrow p(r)$ 
24:   end while
25: end for

```

113 Algorithm 3 is to find the maximum posterior probability for a tree T' within 1-SPR neighbor-
 114 hood of the current tree T . That is, Algorithm 3 runs for a new tree obtained from some SPR
 115 operation.

Algorithm 3 Finding the tree with the maximum probability within one SPR move from the current tree T . Return the maximum posterior probability.

```

1: for  $s = 1 \dots m$  do
2:   Compute  $Q_s(u)$  values for each node  $u$  in  $T$  and the site  $s$  using the probability computation algorithm
   in the original ScisTree.
3:   Compute  $M_{s,1}$ ,  $M_{s,2}$  and  $M_{s,3}$  values for the site  $s$  using Algorithm 2.
4: end for
   ▷ Consider each rSPR move involving pruning a subtree  $T_u$  and regraft s.t.  $T_u$  becomes a sibling of the
   node  $v$ 
5:  $P_{max} \leftarrow -\infty$ 
6: for node  $u \in T$  do
7:   for node  $w_2 \in T$  s.t.  $w_w \notin T_u$  do
8:      $v_2 \leftarrow sibling(u)$ ,  $v \leftarrow p(u)$ ,  $v_1 \leftarrow p(v)$ ,  $w_1 \leftarrow p(w_2)$ 
9:      $P \leftarrow 1$ 
10:    for  $s = 1 \dots m$  do
11:       $M_A \leftarrow \max(M_{s,1}(v_2), M_{s,1}(u), M_{s,1}(w_2)), \frac{M_{s,2}(r, v_1)}{Q_s(u)}$ 
12:       $M_B \leftarrow \max(M_{s,2}(r, w_2)Q_s(u), M_{s,3}(child(r, v), v))$ 
13:       $M_C \leftarrow \max(M_{s,3}(child(r, w_1), w_1), M_{s,3}(root(T), r))$ 
14:       $P \leftarrow P * \max(M_A, M_B, M_C) * \prod_{c=1}^n M[c, s]$ 
15:    end for
16:     $P_{max} = \max(P_{max}, P)$ 
17:  end for
18: end for
19: return  $P_{max}$ 

```

116 **S4 Correctness of Algorithm 3 for evaluating one SPR move for a single site**

117 The key for the correctness of Algorithm 3 is that the Q values at tree nodes before and after the
 118 SPR move are highly correlated. This can be seen by carefully analyzing cases for $Q'(x)$ for nodes
 119 x' in T' as illustrated in Fig. 11 (main text). Q' refers to the Q values *after* the SPR move. Q and
 120 Q' are equal for many nodes, while are different in some other nodes. We have the following cases.

121 1. $Q'(x) = Q(x)$ for the node x that is *outside* the *cycle* formed by the paths $r \rightarrow v$, $r \rightarrow w$,
 122 $v \rightarrow u$ and $w \rightarrow u$ corresponding to the SPR move. There are the following cases for x .

123 (a) x is within a subtree below v_2, u and w_2 ; their maximum Q values are the pre-computed
 124 $M_1(v_2), M_1(u)$ and $M_1(w_2)$ respectively (the first three terms in Equation (3) of the main
 125 text).

126 (b) x is within a subtree whose root v_r is the child of some node on the path $r \rightarrow v$ or the
 127 path $r \rightarrow w$ *but* v_r itself is *not* on these two paths. The maximum Q values for such
 128 nodes are $M_3(child(r, v), v)$ and $M_3(child(r, w), w)$ respectively (the 4th and 5th terms
 129 in Equation (3) of the main text).

130 (c) x is along the path from $root(T)$ to r , whose maximum Q value is $M_2(root(T), r)$ (the
131 6th term in Equation (3)).

132 (d) x is outside the subtree rooted at r , whose maximum Q value is the pre-computed
133 $M_3(root(T), r)$ (the 7th term in Equation (3)).

134 2. $Q'(x) \neq Q(x)$ for a node x where x is *on* the path $r \rightarrow v_1$ or the path $r \rightarrow w_1$.

135 (a) $x \in r \rightarrow v_1$. $Q'(x)$ is equal to $Q(x)$ *divided* by $Q(u)$ after the SPR (the 8th term in
136 Equation (3)). This is because Q' is for the tree *after* the SPR, where the leaves within
137 T_u are pruned (i.e., *absent* from T_x after the SPR).

138 (b) $x \in r \rightarrow w_1$. $Q'(x)$ is equal to $Q(x)$ *multiplied* by $Q(u)$ (the 9th term in Equation (3)).

139 This is after the SPR, the leaves within T_u are regrafted (i.e., *inserted* into T_x after the
140 SPR).

141 Algorithm 3 calculates the maximum of these nine cases for each site, which is equal to the
142 maximum Q' values at all nodes in T' after the SPR move. Algorithm 3 then returns the product
143 of these maximum values over all sites. Thus, this algorithm correctly computes the maximum
144 posterior probability $P(T')$ after a specific SPR move.

145 S5 The branch and bound approach

146 We now describe the details of the branch and bound approach. To simplify the exposition, we
147 focus on one SNV site: the upper bound for multiple sites is the product of the bounds of individual
148 sites. For each node u , we consider each *ancestor* r of u . We let w be a descendant node of r where
149 $LCA(u, w) = r$. Recall that $LCA(u, w)$ is the lowest common ancestor of u and w in the tree. We
150 consider each w in the *top-down* order. Initially, w is set to w_0 , the child of r that is *not* ancestral
151 to u (i.e., w_0 is the root of the subtree right under r not containing u). Then we move downwards
152 from w_0 to leaves. Throughout the search, we keep track of the maximal Q' value so far, denoted as
153 Q'_m . For each node w , we calculate $B(u, w)$, an upper bound on the maximum Q' values among all
154 SPR moves that prune T_u to somewhere *within* T_w . Here, w is considered to be within T_w . There
155 are two cases in this recursive search.

156 1. If $B(u, w) \leq Q'_m$, then there are no SPR moves within T_w that gives higher Q' values than

157 Q'_m and the *entire* subtree T_w can be discarded. That is, any SPR operations that regraft T_u
 158 to be inside T_w are ignored. This can lead to significant savings of computation.

159 2. Otherwise, we calculate the Q' value for the SPR operation that regrafts T_u onto the branch
 160 that *enters* w using Algorithm 3. If $Q' > Q'_m$, we let $Q'_m \leftarrow Q'$. Regardless whether Q'_m
 161 value is updated, we recursively process the two subtrees of w if w is an internal node, and
 162 terminate if w is a leaf.

163 Obviously, to obtain large speedup, choosing a strong $B(u, w)$ bound is critical. The best $B(u, w)$
 164 bound is the exact maximum posterior probability obtained from trees generated by all SPRs that
 165 regraft T_u to be inside T_w . But computing this exact maximum will *not* lead to any speed up:
 166 calculating this maximum would need to run Algorithm 3 for all possible SPRs within T_w ; but the
 167 branch and bound is meant to avoid such exhaustive calculation in the first place.

168 In the following, we present an upper bound that is effective in reducing the search space *and* is
 169 computable in $O(m)$ time (with appropriate preprocessing). In the following, we present an upper
 170 bound on a *single* site that can be computed in constant time. The upper bound of the entire data
 171 is the product of the upper bound for all sites.

172 For two nodes $u, w \in \text{Nodes}(T_r)$ where $LCA(u, w) = r$, we let:

$$B(u, w) = \max[M_1(v_2), M_1(u), M_1(w), M_3(\text{child}(r, v), v), M_3(\text{child}(r, w), w),
 M_2(\text{root}(T), r), M_3(\text{root}(T), r), \frac{M_2(r, v_1)}{Q(u)}, M_2(\text{child}(r, w), w)Q(u), M_1(w)Q(u)] \quad (\text{S6})$$

173 Here, v, v_1, v_2 and $\text{child}(r, v)$ are the same as in Equation (3) of the main text (also see Fig.
 174 11 in the main text). Different from Equation (3), there is only w , but no w_1 or w_2 in Equation
 175 S6. We now argue that $B(u, w)$ is an upper bound on the maximum Q' value for the SPR move
 176 that prunes T_u and regraft it to somewhere within T_w . Equation S6 is closely related to Equation
 177 (3) (the exact maximum Q' for the single SPR move shown in Fig.11 of main text). Intuitively,
 178 $B(u, w)$ in Equation S6 is a *relaxed* version of the exact maximal probability of an SPR move in
 179 Equation (3): instead of specifying a single branch (w_1, w_2) to regraft, Equation S6 provides an
 180 upper bound on the posterior probability for a tree obtained by regrafting to *any* branch within

181 T_w . More specifically, Equation S6 and Equation (3) share the same eight terms. Equation S6 has
182 two terms that are *not* in Equation (3):

183 1. $M_1(w)$, which is the upper bound on the Q values for nodes inside T_w whose Q values are *not*
184 changed by the SPR.

185 2. $M_1(w)Q(u)$, which is the upper bound on the Q values for nodes inside T_w whose Q values
186 are *changed* by the SPR.

187 The other eight terms cover all the Q values outside T_w .

188 For each u and w , computing $B(u, w)$ takes constant time. This is because all the M_1, M_2 and
189 M_3 values have been pre-computed for the current tree. Recall that we may need to compute
190 $B(u, w)$ for each node w in T visited during the top-down recursive search. At each w , we may
191 need to run Algorithm 3. Thus, computing $B(u, w)$ takes the same time asymptotically as running
192 Algorithm 3 for a single SPR move. That is, computing the bounds doesn't slow down the tree
193 search asymptotically. In practice, the bounds can significantly reduce the search space. Our
194 experiments show that this branch and bound approach achieves significant speedup for the SPR
195 local search. See Supplemental Table S1 for the empirical results on the performance of the branch
196 and bound approach.

197 S6 Initial tree construction

198 Similar to ScisTree, ScisTree2 constructs the initial tree using neighbor joining. One key aspect
199 for using neighbor joining is the estimation of the pairwise distance between genotypes of two
200 cells. The original ScisTree used the Hamming distance of the called (i.e., fixed) genotypes as
201 the pairwise distance between two cells. ScisTree2 uses a simple probabilistic pairwise distance
202 which accommodates the uncertainty of genotypes. For two cells c_1 and c_2 , we define the expected
203 Hamming distance $d(c_1, c_2)$ as:

$$d(c_1, c_2) = \sum_{s=1}^m [M(c_1, s) * (1 - M(c_2, s)) + (1 - M(c_1, s)) * M(c_2, s)] \quad (S7)$$

204 We then use the expected pairwise Hamming distance for running neighbor joining. Our results

205 on simulation data (Supplemental Fig. S1) show that the initial trees constructed from the expected
206 pairwise distance are more accurate than those from fixed genotypes.

207 **S7 Calculating the posterior probability of sequence reads simulated by Cell-
208 Coal**

209 The data D simulated by CellCoal are in the form of sequence read counts for different alleles at
210 each SNV site for each cell. CellCoal calculates the likelihood $Pr(D|G)$. We focus on a single cell
211 and a single SNV site. We now show how to calculate the posterior probability $Pr(G|D)$ from
212 $Pr(D|G)$.

213 There are four possible alleles, A, T, C and G. We encode these alleles as 0, 1, 2 and 3 for the
214 four possible bases (A, T, C and G), where 0 is the wild-type allele. The single-cell genotype G
215 has 10 possible values in CellCoal. We use the Bayes formula to calculate the posterior probability
216 $Pr(G|D)$ from the $Pr(D|G)$ values in the VCF files generated by CellCoal:

$$Pr(G|D) = \frac{Pr(D|G)Pr(G)}{\sum_{a_1=0}^3 \sum_{a_2=a_1}^3 Pr(D|G = \{a_1, a_2\})Pr(G = \{a_1, a_2\})} \quad (S8)$$

217 The prior genotype probability $Pr(G = \{a_1, a_2\})$ is estimated by the Hardy-Weinberg equilib-
218 rium: $Pr(G = \{a_1, a_1\}) = f(a_1)^2$ and $Pr(G = \{a_1, a_2\}) = 2f(a_1)f(a_2)$ ($a_1 \neq a_2$), where $f(a)$ is the
219 allele frequency of the allele a . We assign posterior probability of 0.5 (i.e. the probability of being
220 a wild type is the same as that of being a mutant) to positions without any reads in the genotype
221 probability matrix.

222 **S8 Calculating likelihood and posterior probability from read counts for the
223 HGSOC data**

224 The HGSOC data come with the sequence read counts for the called SNV sites. To calculate the
225 posterior probability of genotypes from these raw read counts, we assume a fixed ADO rate θ as

226 0.2 and sequencing error rate ϵ as 0.01. The likelihood $P(D|G)$ of the reads D at a site for a cell is:

$$\begin{aligned}
 L(G) &= Pr(D|G = \{a_1, a_2\}) \\
 &= (1 - \theta) \prod_{i=1}^{N_r} Pr(r_i|G = \{a_1, a_2\}) + \frac{\theta}{2} \prod_{i=1}^{N_r} Pr(r_i|G = \{a_1, -\}) + \frac{\theta}{2} \prod_{i=1}^{N_r} Pr(r_i|G = \{-, a_2\}) \\
 &= (1 - \theta) \prod_{i=1}^{N_r} \left[\frac{1}{2} Pr(r_i|a_1) + \frac{1}{2} Pr(r_i|a_2) \right] + \frac{\theta}{2} \prod_{i=1}^{N_r} Pr(r_i|a_1) + \frac{\theta}{2} \prod_{i=1}^{N_r} Pr(r_i|a_2)
 \end{aligned} \tag{S9}$$

$$Pr(r|a) = \begin{cases} 1 - \epsilon, & \text{if } r = a \\ \epsilon, & \text{if } r \neq a \end{cases} \tag{S10}$$

$$G_{ml} = \underset{G}{\operatorname{argmax}} L(G) \tag{S11}$$

227 where G is the genotype with two alleles a_1 and a_2 , r is a read and N_r is the number of reads.

228 The likelihood $L(G)$ is to used as the inputs of CellPhy. The maximum likelihood genotypes G_{ml}

229 based on the calculated $L(G)$ is used for HUNTRESS. The posterior probability of the genotypes

230 for ScisTree2 can be computed by incorporating a prior on genotype probability using Equation

231 (S8). Allele frequencies are estimated from the maximum likelihood genotypes.

232 S9 Simulation of data by mixing the infinite site model and the finite site model

233 We want to simulate data where a portion of sites follow the finite sites (FS) model. CellCoal
234 offers an option to specify the proportion of sites under the FS model with a relative mutation rate
235 compared to the average mutation rate. However, CellCoal does not produce the desired output
236 directly; for instance, it does not explicitly report the number of FS model sites in the simulated
237 data.

238 To address this limitation, we utilize CellCoal to generate data and subsequently merge multiple
239 sites into single sites to emulate the FS model. More specifically, if we aim to generate data with
240 100 cells, 500 sites, and an FS model proportion of 0.2, we first use CellCoal to simulate 10,000
241 sites under the infinite-site (IS) model, which is significantly more than the desired number of sites.

242 We then retain the first 400 sites unchanged to represent IS model sites. For the remaining 100 FS
243 model sites, we iteratively merge pairs of adjacent IS model sites until the total number of sites is
244 reduced to 500.

245 **S10 Robustness of the HGSOC data analysis**

246 There are several aspects that can complicate real data analysis. First, some real data may have
247 more noise than the data we simulated before. Second, there is uncertainty in parameters used
248 by ScisTree2 and other methods such as priors when analyzing real data. Such parameters may
249 affect the analysis results. In the following, we investigate how robust analysis results from different
250 methods can be on the real HGSOC data.

251 **Noise in the data.** It is possible that some real data may have higher level of noise than the
252 HGSOC data. To test how robust ScisTree2 works for data with more noise, we generate semi-
253 simulated data by adding various level of noise into the HGSOC data. We test two ways of adding
254 noises into the HGSOC data.

- 255 1. Randomly adding or discarding reads. For each site for a cell, perturb its read count by a
256 random number. The probability of changing the read count is the level of added noise. This
257 is to simulate data with noises in read counts.
- 258 2. Randomly masking the genotype probability to be 0.5 (i.e., becomes a missing value) for some
259 site at a cell. Mask rate, the fraction of positions masked to be missing, is the level of added
260 noise. This is to simulate data with large number of missing values.

261 **Uncertainty in parameters.** To calculate the posterior probability from sequence reads, two
262 parameters are required: the dropout rate and the genotype prior (Equation S9). In real data, there
263 are uncertainty in these parameters. To evaluate the impact of such uncertainties, we conducted
264 tests running ScisTree2, CellPhy, and HUNTRESS on the HGSOC dataset, employing various
265 settings for these two parameters. Specifically, we tested dropout rates of 0.2, 0.5, and 0.75,
266 alongside a non-informative prior that assigns equal probabilities to all genotypes. This resulted in
267 six distinct combinations of dropout rates and priors.

268 Experiments (Supplemental Fig. S3) show that ScisTree2 is robust across different parameter
269 values. This indicates that extensive fine-tuning may not be required. We recommend selecting a
270 dropout rate between 0.2 and 0.75.

271 For genotype priors, we evaluate two approaches: (i) deriving priors from allele frequencies
272 based on Hardy-Weinberg equilibrium and (ii) employing a non-informative prior, where genotype

273 probabilities are set to 0.5. Our results indicate that the option (i) improves the overall inference
274 accuracy. Therefore, for practical applications, we recommend using genotype priors computed
275 from allele frequencies.

276 **Supplemental Fig. S1: Accuracy of trees by neighbor joining with fixed**
 277 **genotypes vs. uncertain genotypes**

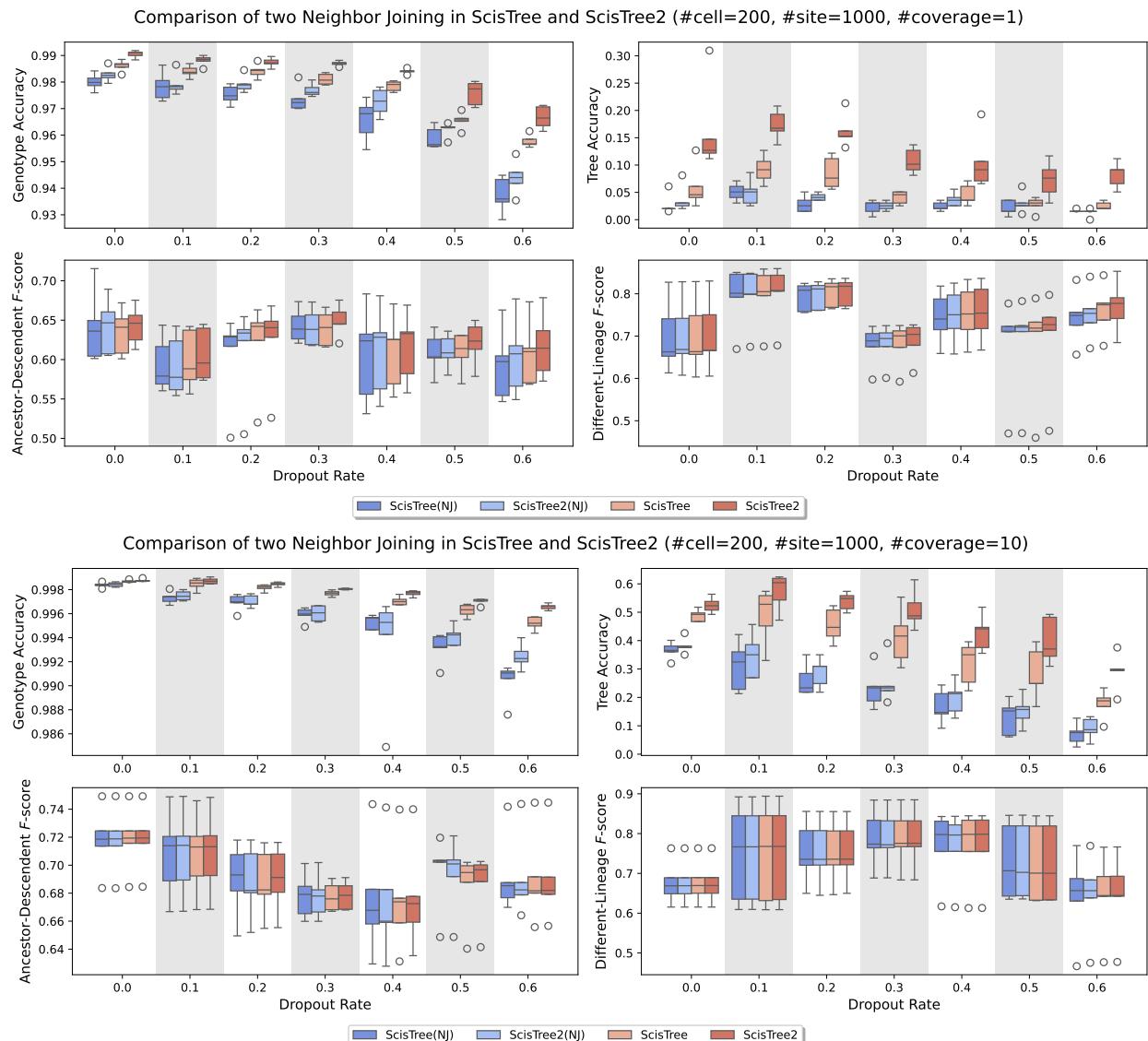


Figure S1: Accuracy comparison of the neighbor joining (NJ) approach with ScisTree and ScisTree2. Top: low coverage (1x). Bottom: high coverage (10x). X-axis: varying dropout rates. Y-axis: accuracy. NJ performs reasonably well when the data has high coverage and low dropout rate. However, NJ performs worse than ScisTree2 for data with lower quality.

278 **Supplemental Fig. S2: Simulation of adding noise in the data**

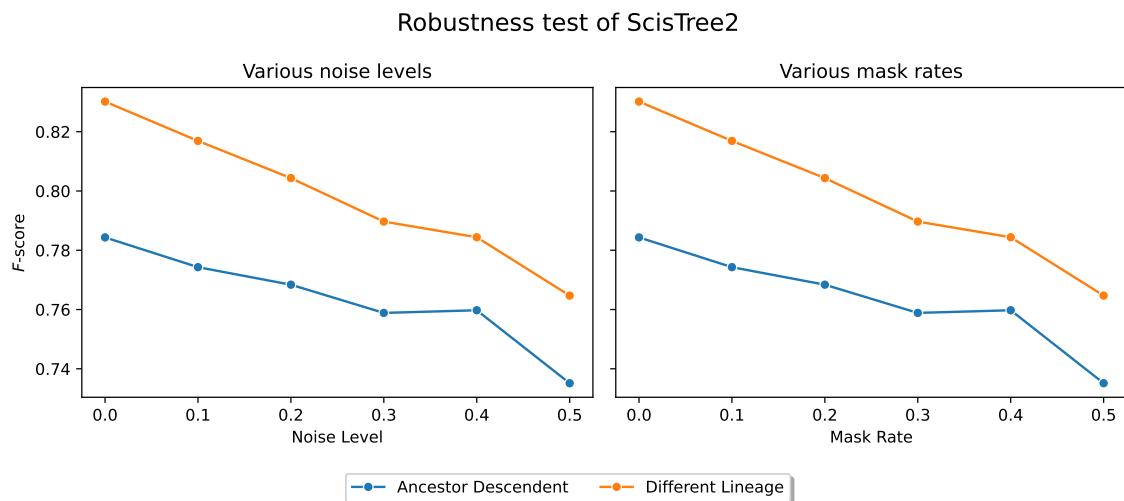


Figure S2: Performance of ScisTree2 on semi-simulated data by adding noise to the HGSOC data using the approach outlined in the Supplemental Methods. Left: making random changes to the alleles in the read counts for certain percentage of positions. Right: randomly discarding certain fraction of genotype probabilities. Y axis: F -score for AD and DL.

279 **Supplemental Fig. S3: Uncertainty in parameters for HGSOC data analysis**

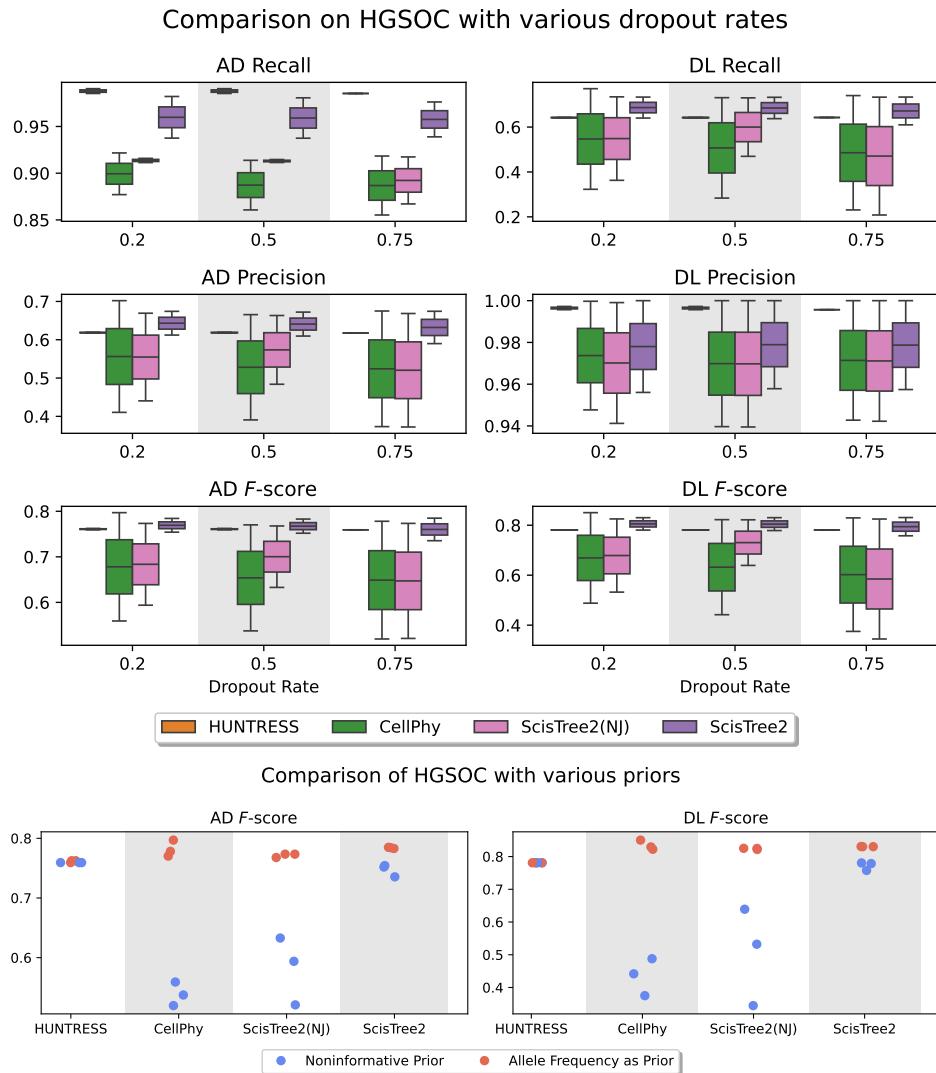


Figure S3: Robustness testing of the effect of parameter uncertainty by varying the ADO rate and genotype priors for the HGSOC data analysis when running ScisTree2, CellPhy and HUNTRESS and NJ (see the Supplemental Methods). AD/DL are used to assess accuracy. Top: varying dropout rates. Bottom: varying the genotype prior: (i) prior calculated from allele frequency by Hardy-Weinberg equilibrium and (ii) non-informative prior. With regards to dropout rates, ScisTree2 shows robustness across different parameter values.

280 **Supplemental Fig. S4: Detailed running time of various methods**

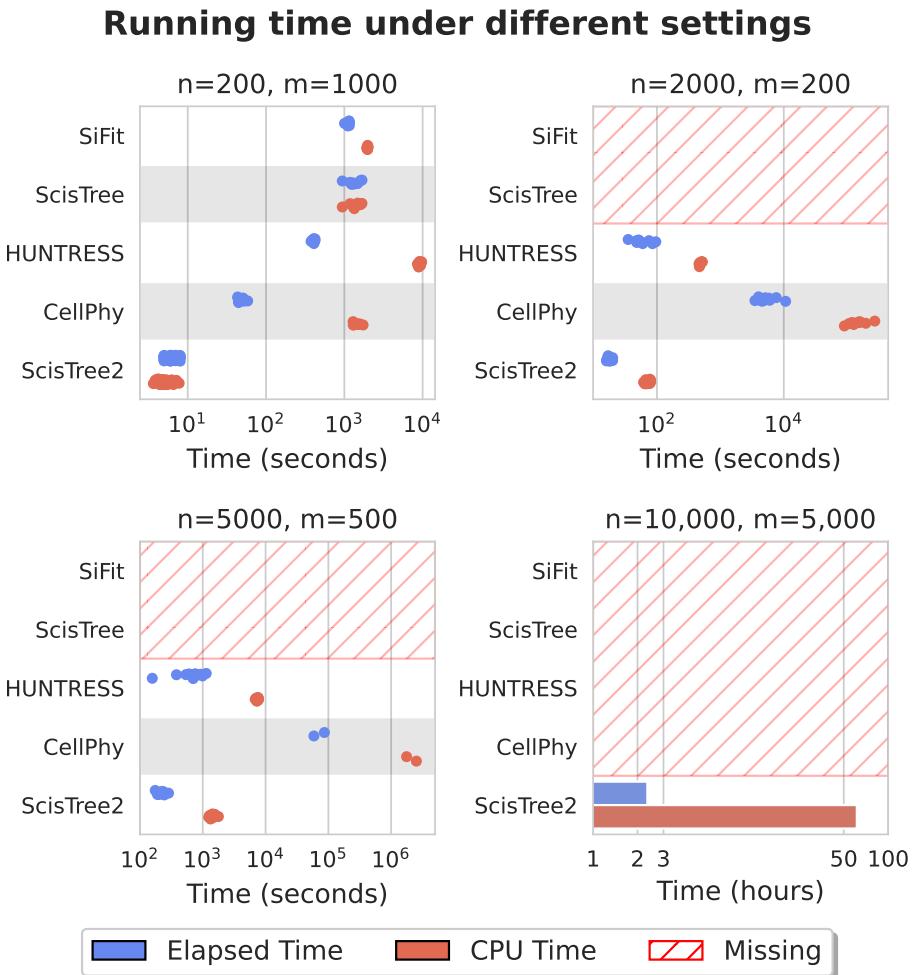


Figure S4: Comparison of the elapsed (user) and CPU running time between ScisTree2 and other methods on simulated data with the varying numbers of cells and sites. Time is the elapsed time (in hours). 30 threads were used for methods supporting multi-threading. Methods that are too slow are not reported. n is the number of cells. m is the number of sites.

²⁸¹ **Supplemental Table S1: Speedup by Branch-and-Bound**

#Cell	#Site	Elapsed Time(secs)			CPU Time(secs)		
		ScisTree2 (no BB)	ScisTree2	Speedup	ScisTree2 (no BB)	ScisTree2	Speedup
100	500	1.57	1.07	1.47	7.09	2.52	2.81
200	200	3.31	1.89	1.75	11.98	3.92	3.06
200	400	4.14	2.35	1.76	24.13	6.67	3.62
200	1,000	7.43	4.13	1.80	77.07	15.32	5.03
200	2,000	11.71	6.46	1.81	161.15	24.48	6.58
500	2,500	79.41	30.77	2.58	1,575.94	140.27	11.24
1,000	5,000	673.17	161.61	4.17	15,631.39	930.22	16.80

Table S1: A comparison of CPU and elapsed time for ScisTree2 with and without the branch-and-bound (BB) speedup. All tests were conducted using 30 threads. The branch and bound's effect becomes more evident as the number of cells increases.

282 **Supplemental References**

283 Gusfield D. 1991. Efficient algorithms for inferring evolutionary history. *Networks*, 21(1):19-28.

284 Kozlov A, Alves JM, Stamatakis A, Posada D. 2022. Cellphy: accurate and fast probabilistic
285 inference of single-cell phylogenies from scdna-seq data. *Genome Biology*, 23:37.

286 Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, Vilar E, Maru D, Kopetz S, Navin NE.
287 2017. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal
288 cancer. *Genome research*, 27(8):1287-1299.

289 Stamatakis A. 2014. Raxml version 8: A tool for phylogenetic analysis and post-analysis of large
290 phylogenies. *Bioinformatics*, 30(9):1312–1313.

291 Wu Y. 2020. Accurate and efficient cell lineage tree inference from noisy single cell data: the
292 maximum likelihood perfect phylogeny approach. *Bioinformatics*, 36(3):742–750.