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Figure S1: Architectures of the neural network models used for shrinkage. Input consists of observed
effect ﬂl, standard error se;, LD score ¢; of the focal variant ¢, as well as observed effects ,BJ and LD values
r;; of the top T" variants that are in highest LD (r;;) with the focal variant 7. Output is the regularized
effect 3;, aiming at approximate the unknown true effect Si. Input and output dimensions of each layer are
included in brackets. The dropout layer is not included in the last hidden layer in each model.
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Figure S2: A graphical representation of the zero-mean infinite-mixture (Eq. EI) using plate notation.
Nodes are random variables and edges represent the dependence between them. The observed variable is
shaded. Uncircled letters are hyperparameters. Dashed lines indicate that z is dependent on v through T,
but 7 is not explicitly included as a variational variable in the inference since it can be deterministically
represented by v.
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Figure S3: Our NN methods ML-MAGES 2L and 3L outperform the others in shrinking inflated GWA
effect sizes and subsequently identifying associated genes in simulations with three traits. The figure
design follows that of Fig.2]in the main text. Legends shown in panel A apply to all panels; each violin
plot ordered from left to right as ENET, SUSIE, FINEMAP, MTAG, LINEAR, ML-MAGES 2L and 3L. The
significance of the comparisons using Welch’s t-test are indicated on the violin plots. Left (SNP-level
performance): comparing the regularized effects and the true effects of each simulation. Center (gene-
level univariate performance): comparing univariate enrichment test with the simulated ground truth. Right
(gene-level bivariate performance): comparing aggregated effect at gene-level based on bivariate association
clustering output with the simulated ground truth (i.e., trait-specific vs. shared). A: Precision-recall curve
(PRC) averaged across all 300 simulations (by interpolation), where the positives are the true non-zero
effects and the precision-recall pairs are obtained by thresholding | B\ B: RMSE between 3 and 3. C: PRC
averaged across all 300 simulations (by interpolation), where the true positives are the truely associated
genes and the precision-recall pairs are obtained by thresholding negative log of p-values from enrichment
tests. D: F'-score of identifying associated genes, where genes with an FDR-adjusted p < 0.05 from the
enrichment test is identified as associated. E: Trait-specific average precision (AP) for identifying genes with
trait-specific association to simulated trait 1, when ranking genes by the sum of absolute effects of variants
in trait-specific clusters and comparing against genes being truly trait-specific. F: Average precision (AP)
for identifying genes associated to both traits 1 and 2, when ranking the genes by the sum of absolute effects
of variants in clusters of shared association between these two traits and comparing against the ground-
truth. G: Average precision (AP) for identifying genes associated to all three traits 1, 2, and 3, when ranking
the genes by the sum of absolute effects of variants in clusters of shared association among all traits and
comparing against the ground-truth.
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Figure S4: ML-MAGES 2L and 3L outperform elastic net and linear neural network model on shrink-
ing inflated GWA effect sizes when models are trained on synthetic data simulated from imputed UKB
genotypes. Outputs of 10 separately trained models for each NN architecture are ensembled to provide the
final shrinkage results. The three simulation settings, A-B, C-D, and E-F, differ in the fraction of causal
genes (f4) and the fraction of causal variants in each causal gene ( f.s), labeled on top of each column). The
fraction of causal variants not in any causal genes is fixed to be 0.1. The two NN architectures, ML-MAGES
(2L) and ML-MAGES (3L), and the single-layer neural network for comparison, labeled as LINEAR, are
each averaged across 10 models trained independently. The performances of ML-MAGES (2L) and ML-
MAGES (3L) are compared to that of LINEAR, as well as that of elastic net using both untransformed and
transformed synthetic effects, labeled as “scaled” and “unscaled”. The transformed synthetic effects are
scaled to match the distribution of the summary statistics of mean corpuscular volume (MCV) from UKB
and are used to construct NN inputs. The unscaled effects closely reflect the simulation that |Cheng et al.
(2020) used for evaluating gene-e. The figure style follows that of Fig. 2] panels A and B, where on top
shows the precision-recall curves and on bottom shows the weighted RMSE, with the weights applied in-
versely proportional to the fraction of variants with true non-zero and zero effects. The significance of the
comparisons using Welch’s t-test are indicated on the bottom of the violin plots.



SNP-level performance of ML-MAGES (2L)
(trained on simulation setting “s=-0.25,w=0" and tested on different settings)
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Figure S5: ML-MAGES models trained on a simulation setting show robust performance on data
generated under different simulation settings. The ten ML-MAGES (2L) models are trained on data
simulated with s = —0.25 and w = 0, where s controls the influence of allele frequency on effect size
variance through heterozygosity, and w controls the dependence on LD score (Eq.[I0), with a value of zero
indicating no influence or dependence. The models are evaluated on data under the same simulation setting,
as well as three other simulation settings: s = 0, w = 0, s = 0,w = —1, and s = —0.25,w = —1.
Each setting has 400 simulations. A: Precision-recall curve (PRC) averaged across all 400 simulations (by
interpolation), where the positives are the true non-zero effects and the precision-recall pairs are obtained
by thresholding \B| B: RMSE between S5 and B . C: Pearson correlation between 3 and ﬂ~ . D: Aread under
the ROC curve (AUROC) for 8 and B . Model performance remains consistent across different simulation
settings, indicating that our NN models are relatively robust to variation in model assumptions.
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Figure S6: ML-MAGES models, trained on simulations from a different set of chromosomes, demon-
strate consistent performance on synthetic data. Models marked with “different training data” were
trained on simulations generated from Chromosomes 13, 14, 16, and 17, with Chromosome 15 left for val-
idation. Models without the mark are the same ones shown in Fig. [2] which were trained on simulations
generated from Chromosomes 18, 19, 21 and 22, with Chromosome 20 left for validation. Performances
are evaluated on 100 simulations of effects generated on 1,000-variant segments from Chromosome 15.
A: Precision-recall curve (PRC) averaged across all simulations, where the positives are the true non-zero
effects and the precision-recall pairs are obtained by thresholding | B[ B: RMSE between (3 and 3. All
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performances are similar across models.
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Clustering of SNP-level effect sizes output by MTAG
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Figure S7: Trait-specific effect sizes output by MTAG (Turley et al., 2018) when two traits, HDL and
LDL, are analyzed jointly by the method. A: Scatter plot of trait-specific effects for HDL versus those
for LDL for UK Biobank genotyped variants, colored by clusters detected by the association clustering. B:
Covariance ellipses of Gaussian mixtures representing clusters inferred from association clustering. MTAG
does not shrink effect sizes, and its output effects are not all strictly “trait-specific”, as large shared associa-
tion clusters (Cls. 1-5) remain evident in the clustering results.
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