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Al.1 Related work

Burden tests. While our Bayesian RVAT framework is general, we here specialize
it to perform burden tests. Burden tests aggregate the effects of rare variants into a
gene burden score to improve statistical power. This score is then regressed against
a trait of interest in a formal test [4, 14, 13, 19, 23, 20]. While traditional burden
tests have been limited to few annotations such as minor allele frequency (MAF) and
variant consequences [8, 14], BayesRVAT can integrate multiple annotations leveraging
a Bayesian framework.

Allelic series. BayesRVAT can model gene-level effects as a function of multiple rare
variants and their functional annotations, effectively capturing allelic series. The term
“allelic series” refers to a collection of variants within a gene that exhibit a gradation
of phenotypic effects based on their severity, suggesting a dose-response relationship
between gene functionality and the resulting phenotype [22, 21]. As allelic series



enable the assessment of the feasibility of pharmacological modulation [21, 6, 17],
methods that can accurately capture these relationships are of significant interest. For
example, COAST models allelic series by weighting variants based on the expected
deleteriousness of few functional consequences [17]. Conversely, DeepRVAT uses a
data-driven approach to learn a trait-gene-agnostic aggregation function from multiple
annotations using neural networks [5]. In contrast to these methods, BayesRVAT can
handle larger sets of variant annotations without enforcing a universally fixed scheme
across genes and traits.

Variance component models. In contrast to burden tests, which assume a uniform
effect direction across all variants, variance component approaches allow for both dele-
terious and protective effects by employing random effect models. The most widely
used variance component test for rare variants is SKAT [28]. Given the complemen-
tary strengths of burden and variance component tests [1], omnibus tests that combine
both, such as SKAT-O [12], have become increasingly popular[18, 15, 32]. In this work,
we demonstrate that BayesRVAT integrates smoothly within omnibus test procedures,
maintaining its power advantages over other integrated burden tests.

Bayesian inference. BayesRVAT performs Bayesian inference on parameters mod-
eling variant effects as a function of multiple annotations. Given the intractability
of exact posterior computation, we use black-box variational inference [24], which
reformulates the inference problem as an optimization task, directly optimizing a
variational distribution to approximate the true posterior using gradient-based meth-
ods [2, 25, 11, 7, 26]. While Bayesian methods for RVAT have been previously ex-
plored [30, 27, 16, 31], BayesRVAT is the first unified Bayesian framework that can
incorporate multiple genetic architectures and variant annotations.

Al.2 Simulation design
Briefly, for each random seed, we simulated the phenotype as follows:

e For null simulations, no genetic effects were included and phenotypes were sam-
pled as standard normal noise across individuals;

e For alternative simulations, we randomly selected C' contributing continuous
annotations;

e The gene burden was built using the additive model with saturation
9s(X, A) = sigmoid(X (A¢) — bo). (A1)

where the effects of pLoF and missense were sampled from their respective pri-
ors, and the effects of the C selected contributing continuous annotations were
sampled from N(4,0.01)*;

e To evaluate robustness under model mismatch, we simulated the total genetic

effect as
g=+v1-nb+Mu,

*This ensures that the selected contributing annotations have a measurable effect on the burden
score, thus effectively controlling the number of contributing continuous annotations C.



where b is the burden and w is the standardized X*3. The matrix X* was
obtained from X by (i) collapsing ultra-rare variants (MAC< 10) and (ii) ap-
plying SKAT-style MAF-based weights w; = /Beta(maf;; 1,25) [28], with 8 ~
N(0,I). The parameter 7 controls the degree of mismatch, with n = 0 corre-
sponding to a pure burden model.

e The burden was standardized to have a mean of 0 and standard deviation of 1
across individuals;

RNXl

e The phenotype y € was simulated as:

Y=g g+T—v,-%, ¥ <NO1), (A2)

where g € RV*! is the standardized total genetic effects and v, represents the
corresponding proportion of explained variance.

e For binary traits, we applied a threshold to the simulated continuous phenotype
to generate case—control labels. To ensure comparable power with the continuous
case for benchmarking, we increased the default value of the total genetic variance
from 3 x 107% to 5 x 1074,

In this framework, we evaluated power of BayesRVAT and other burden tests varying
C, vg, and the sample size.
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Supplemental Figure S1 | Prior distributions for variant annotations used
in BayesRVAT. (A-D) Prior distributions over the raw annotation weights ¢, be-
fore applying the shift by and the sigmoid transformation in the aggregation function
9p(X,A) = 0(XA¢p —byplnx1). (A) pLoF variants are modeled with a normal prior
(mean = 8, standard deviation = 1). (B) Missense variants are modeled with a
normal prior (mean = 2, standard deviation = 2). (C) Other non-synonymous vari-
ants follow a normal prior (mean = 2, standard deviation = 2). (D) Continuous
annotations, including regulatory and functional scores, are modeled with softplus-
transformed Gaussian priors (mean = 0, standard deviation = 1, 8 = 2), ensuring
positive contributions to the burden score. (E) Translation of annotation-level priors
into distributions of gene burden scores. pLoF variants, reflecting their strong and dis-
ruptive biological impact, are highly likely to yield burden scores near one. Missense
and other non-synonymous variants contribute more weakly and variably, while con-
tinuous regulatory scores, which are often noisier and gene- or trait-specific, contribute
only small positive effects. Together, this illustrates how BayesRVAT can be viewed
as a pLoF-based test that flexibly incorporates additional annotations, consistent with
long-standing biological knowledge.



Calibration under the null
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Supplemental Figure S2 | Assessment of calibration of BayesRVAT in sim-
ulations varying sample size. Shown are QQ plots of P values from BayesRVAT
under a null model with no genetic effects, using simulated phenotypes for 50,000,
100,000, 200,000, and 300,000 unrelated individuals from the UK Biobank (Methods).
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Supplemental Figure S3 | Power under model mismatch with annotation-
independent random effects. We simulated causal architectures where variant
effects included annotation-independent random-effect components not captured by
the modeled annotation set, creating increasing mismatch between the true effects
and BayesRVAT’s allelic series prior. Results are shown for N = 100,000 (A) and
N = 300,000 (B). As the contribution of the random-effect component increased, all
methods lost power. BayesRVAT retained a clear advantage over alternative burden
tests across most configurations, while variance-component methods such as SKAT-O
outperformed BayesRVAT when the signal was dominated by random effects. Error
bars represent standard errors across simulation replicates.
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Supplemental Figure S4 | Power assessment of BayesRVAT across differ-
ent contributing annotations to the phenotype, cohort sizes and variance
explained by genetic effects. (A-C) Statistical power of BayesRVAT compared to
pLoF-burden, ACAT-Conseq, ACAT-MultiAnnot, SKAT, and SKAT-O across vary-
ing number of contributing annotation to the phenotype (A) variance explained by
genetics (B) and cohort size (C). Power is measured at the exome-wide significance
threshold of P < 2.5 x 1079, with results averaged over 100 random seeds for each
setting.
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Supplemental Figure S5 | Calibration of BayesRVAT for binary phenotypes.
Quantile-quantile (QQ) plots of observed versus expected P-values under the null for
case—control traits across different sample sizes (N = 50,000 to N = 300,000) and
prevalences (30% to 2%). In all settings, BayesRVAT maintains well-calibrated test
statistics, even at low prevalence and large sample sizes. Red dashed lines indicate
the expected null distribution. These results confirm that BayesRVAT retains valid
calibration for binary traits across a broad range of realistic study designs.
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Supplemental Figure S6 | Power of BayesRVAT for binary phenotypes com-
pared to alternative burden tests. Power was evaluated across a range of sim-
ulation scenarios and compared with ACAT-Conseq, ACAT-MultiAnnot, and pLoF-
burden. (A) Increasing number of contributing annotations. (B) Increasing propor-
tion of variance explained by genetics. (C) Varying case—control prevalence. (D)
Increasing cohort size. Across all conditions, BayesRVAT demonstrates higher power,
particularly when multiple annotations contribute modest effects or when sample size
and trait prevalence are limited. Error bars indicate standard errors across simulation
replicates.
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Supplemental Figure S7 | Comparison of P-values from different burden test
strategies in the blood trait analysis. Each scatter plot compares the —logig P-
values from two different methods, where points represent individual gene-trait pairs.
Diagonal lines indicate equal P-values for the two methods being compared. Blue, yel-
low, red and pink points highlight gene-trait pairs uniquely identified by BayesRVAT,
ACAT-MultiAnnot, and ACAT-Conseq, and pLoF, respectively, that are not detected
by the other method. BayesRVAT recapitulates most signals from other tests, re-
covering additional associations beyond consequence-based burden tests and boosting
nominal signals relative to ACAT-MultiAnnot in allelic series settings.
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Supplemental Figure S8 | Violations of the allelic series assumptions in
BayesRVAT explain differences with ACAT-MultiAnnot. The heatmap dis-
plays —log1g P-values for gene-trait associations across individual annotations tested
in ACAT-MultiAnnot, as well as the overall results for BayesRVAT and ACAT-
MultiAnnot. Each column corresponds to a gene-trait pair identified by ACAT-
MultiAnnot but missed by BayesRVAT, and each row represents a different annotation
or burden test. In all these cases, the loss of power for BayesRVAT can be explained by
the violation of the allelic series assumption encoded in its prior—namely, that pLoF
variants have stronger effects than other annotations. In these gene-trait pairs, cer-
tain annotations (e.g., CADD, PolyPhen, Condel) exhibit much stronger effects than
pLoF, driving the associations in ACAT-MultiAnnot. Stars (*) denote annotations
with P-values that pass the Bonferroni-adjusted significance threshold of o < 0.05.
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Supplemental Figure S9 | Analysis of blood biomarkers in the UK Biobank
including SKAT and SKAT-O. (A) BayesRVAT outperform both burden (pLoF-
Burden, ACAT-Conseq, and ACAT-MultiAnnot), variance components (SKAT) and
optimal (SKAT-O) tests in number of discoveries at varying Bonferroni-adjusted sig-
nificance thresholds a. (B) BayesRVAT shows a superior number of discoveries even
when other methods are integrated with SKAT results.
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Supplemental Figure S10 | Comparison of biologically informed versus flat
priors in BayesRVAT. (A-B) Distribution of burden scores under the biologically
informed pLoF-dominant prior (A) and a flat prior across consequence classes (B).
The pLoF-dominant prior yields burden scores concentrated near one for pLoF carriers,
while other annotations contribute more variably and weakly. (C) UK Biobank blood
trait analyses comparing the number of discoveries across significance thresholds. The
pLoF-dominant prior (solid line) produces substantially more discoveries than the flat
prior (dashed line), confirming that upweighting pLoF is both biologically justified and
empirically beneficial.
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Supplemental Figure S11 | Burden score and annotation importance scores
(AIS) for additional blood biomarker associations detected by BayesRVAT.
(A) Burden scores learned by BayesRVAT for EPB42 and HbAlc across burden per-
centiles, with individuals carrying pLoF mutations highlighted in red. This association
aligns with recent findings showing a strong link between rare variants in EPB/2 and
Alc levels [10]. (B) Annotation importance scores (AIS) for the association between
EPB42 and HbAlc, showing contributions from annotations such as missense, SIFT,
and DeepSEA. (C) Burden scores for NPC1L1 and apolipoprotein B (ApoB), with
pLoF variants highlighted in red. NPC1L1 is crucial for cholesterol absorption in the
intestine and liver, and variants in this gene have been linked to altered ApoB lev-
els, influencing lipid metabolism and cardiovascular disease risk [9]. (D) AIS for the
association between NPCIL1 and ApoB, highlighting the roles of missense and regula-
tory annotations. (E) Burden scores for ANGPTL/ and HDL cholesterol, with pLoF
variants highlighted in red. ANGPTL} is a key regulator of lipid metabolism, inhibit-
ing lipoprotein lipase, which affects triglyceride breakdown and HDL cholesterol levels,
with certain variants associated with increased HDL and cardiovascular protection[29].
(F) AIS for the association between ANGPTL/ and HDL cholesterol, showing con-
tribution from annotations such as missense, other non-synonymous, DeepRiPE, and
DeepSEA.

14



200 . J-’f',
n
(]
3 1501
)
R
©
4 100 A
o
2
g 50 A
é = BayesRVAT-STAAR-O
0 - == STAAR-O

0.00 0.05 0.10 0.15 o0.20
Bonferroni-adj. P

Supplemental Figure S12 | BayesRVAT improves gene—trait discovery when
integrated into the STAAR omnibus framework in blood trait analy-
sis. Cumulative number of significant gene—trait associations (y-axis) as a func-
tion of Bonferroni-adjusted P value thresholds (x-axis) for STAAR-O (purple) and
BayesRVAT-STAAR-O (blue), which integrates BayesRVAT with all unit tests in
STAAR. BayesRVAT-STAAR-O consistently yields more discoveries, indicating com-
plementary signals captured by BayesRVAT.
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Supplemental Figure S13 | Runtime scalability of BayesRVAT. BayesRVAT
scales linearly with sample size by design, enabling efficient application to large biobank
datasets. Additional computational gains are achieved by exploiting the sparsity of
rare variant burdens, allowing the ELBO expectation term to collapse to the exact
log marginal likelihood for the 90-99% of individuals carrying no variant. Shown is
the mean runtime as a function of sample size (50k—300k), with error bars denoting
standard deviations across replicates and a linear fit (red).
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Supplemental Figure S14 | Comparison of BayesRVAT variational inference
(VI) and full MCMC inference. We evaluated BayesRVAT’s mean-field VI against
Stan [3] on 100 simulated phenotypes at N = 100,000 under the default simulation
design. (A) Posterior means of the aggregation parameters were highly consistent
between VI and MCMC. (B) As expected, VI produced narrower posterior standard
deviations than MCMC. These results confirm that BayesRVAT’s VI approximation
yields parameter estimates consistent with MCMC, while slightly underestimating pos-
terior uncertainty.
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B Changes in P-values when doubling K.

Supplemental Figure S15 | Trade-off between computational efficiency and
accuracy in the number of importance samples. We evaluated the effect of
varying the number of importance samples (K) on BayesRVAT test statistics (A) and
the corresponding changes in P-values when doubling K (B). Increasing K improves
the accuracy of the importance-weighted approximation and yields slightly lower P-
values, at the cost of higher computational demand. These results illustrate the trade-
off between computational efficiency and precision, showing that performance stabilizes
rapidly and that changes remain within one order of magnitude.
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Supplemental Figure S16 | Robustness of BayesRVAT optimization to dif-
ferent Monte Carlo seeds. (A—B) Association P-values from two independent runs
of the UK Biobank blood biomarker analysis, where each run used 16 fixed Monte Carlo
samples but with different random seeds, resulting in distinct sets of samples. Results
are shown across the full range (A) and at smaller scales (B). (C) Posterior means
of the aggregation parameters from the two runs, with error bars indicating posterior
standard deviations. The nearly identical outcomes confirm that BayesRVAT opti-
mization yields consistent parameter estimates even when different fixed sets of Monte

Carlo samples are used.
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Supplemental Figure S17 | Empirical assessment of the choice of K = 16
importance samples (LDL analysis). Comparison of —log;, P values for LDL
obtained with K = 16 (x-axis) versus K = 32 (blue) and K = 64 (orange). Results
show nearly perfect correlations (r = 0.98), indicating that increasing K beyond 16
has minimal impact on hypothesis rankings. This analysis supports the use of K = 16
as a computationally efficient and empirically robust choice in BayesRVAT.

20



A3 Supplemental Tables

Supplemental Table S1 | Significant gene-trait associations from the anal-
ysis of eight disease traits. Shown are P values for pLoF-only (Ppror), ACAT-
Consequence (PacAT-Conseq); ACAT-MultiAnnot (PAcAT-MultiAnnot), and BayesRVAT
(PBayesrvat), and effect size estimates (3) for pLoF and BayesRVAT burdens.
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