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A Proof of the Reparameterization Lemma

To formally prove Lemma 1 we require no empty rows (rows will all zeros) in W and H. This means there are no
spots with zero inferred expression, and there are no latent factors with zero inferred expression.

Lemma. Given A_U = WH where W and H has no empty rows and W,H > 0, there exists P, Q, N with P, Q, N >
0,P1p = Tis,QliG,| = T4 as defined in Methods - A shared cell type model between paired SRTs, such that

Ay = diag(N)PQ, and vice versa.

Proof. The forward direction can be proved in two steps, starting with W and H:

+ Let Ry = H1g,| be the row sum of H. Since H has no empty rows, Ry > 0 and let W; = W diag(Ry),Q =
diag(1/Ry)H. We have WH = W;Q where Q is already row-normalized.

. Let N = W;1y be the row sum of W;. We can further set P = diag(1/N)W; knowing N > 0, and since
diag(N)P = W;, we have diag(N)PQ = W;Q = WH.

The reverse direction can be proved by setting W = diag(N)P, H = Q from which we get WH = diag(N)PQ. O

B Benchmarking on simulated Xenium and Visium data

B.1 Steps for generating simulated Xenium and Visium data

We collect the paired scRNA-seq data, Visium data, and Xenium data from the BRCA dataset (Janesick et al. 2023) as
described in Results - Setup and evaluation. Following the notation of Methods - A shared cell type model between
paired SRTs the simulated Xenium slice measures genes in Gx over cell locations Sx, the simulated Visium slice
measures genes in Gy over spot locations Sy, and Gx C Gy. We further cluster the cells in the scRNA-seq data and
selected h distinct clusters. Our simulation process contains the following steps.

« Step 1: Checkerboard style spatial clusters for Xenium spatial locations We first assign each cell in X
to one of h clusters. This assignment is done by dividing the coordinates of Sx into square grids, then assigning
all cells in each grid to the same cluster such that that cells from adjacent grids belong to different clusters.
Such assignment will create a checkerboard style (Jackson et al. 2024) pattern based on Sx. In this simulation
a larger fraction of neighboring cells belong to different clusters, leading most Visium spots to contain cells
from multiple cell types. Consequently state-of-the-art spatial clustering algorithms struggle to accurately
deconvolve the cluster mixture proportions (Jackson et al. 2024) from this simulated data. The spatial location
to cluster assignment is represented as a matrix Py, where Py € {0, 1}SxIxh,

« Step 2: Constructing the Poisson mean for the latent gene expression matrix Unlike real data, in
simulation we can create the Poisson mean of the latent gene expression matrix Ay € NISXIXIGvI Given
the scRNA-seq gene expression matrix and the cell to cluster assignments, we first compute the normalized
average gene expression for each cluster, represented by O € R I6v! st Q01 iGv] = Tp. Using the Xenium
spatial location to cluster assignment from step 1, the simulated latent gene expression matrix is sampled from
a Poisson mean Ay = diag (N)PxQ, where N € NI¢| denotes the expected gene count for each Xenium cell.

« Step 3: Simulating Xenium gene expression matrix The Xenium expression matrix Ax € RISxIXIGx jg 4
submatrix of the latent gene expression matrix Ay ~ Pois(Ay) where columns are restricted to gene set Gx.

« Step 4: Simulating Visium gene expression matrix We use a pre-computed mapping matrix I' to compute
the Poisson mean of Visium gene expression as Ay = I'7 Ay, meaning the Poisson mean for each Visium spot
equals the sum of Poisson mean from each Xenium cell mapped to that spot. We then sample Ay ~ Pois(Ay)
independently of Ay. We additionally construct cluster mixture proportion matrix Py € [0,1]18vIxh by row-
normalizing T7 diag (N)Px.

Upon simulating the Xenium count matrix Ay and Visium count matrix Ay, we can construct an instance
((Ax, Sx), (Ay, Sy),T) for Reparameterized Paired NMF Inference problem using the imputation setup described in
Results - Imputation setup and holdout evaluation for one of the 10 folds. We then run SIID with h latent factors. We
measure the accuracy of SIID, by comparing the estimated parameters (P, Q, N, M) with the ground-truth parameters
as follows,



« We compute Jensen-Shannon divergence between P and Py to measure the accuracy of Xenium spot to cluster
assignment.

« To evaluate the cluster assignment for Visium spots, we first calculate Py = MTP using estimates from SIID.
The row-normalized Py is compared with Py as defined above in Step 4 of the simulation.

+ We evaluate the gene expression for inferred clusters by comparing O to Q Here we compute the pairwise
Pearson correlation coefficients between the rows of Q, and Q.

« We also evaluate the performance of our model in imputing holdout genes in Xenium panel by the same process
described in Results - Imputation setup and holdout evaluation.

B.2 Benchmarking deconvolution results
STdeconvolve setup

To do a fair comparison with SIID, we run STdeconvolve on Visium data on the shared genes between Xenium and
Visium data. As the remaining genes are low in number we did not perform any gene selection before running
STdeconvolve . The other steps are same as described in STdeconvolve documentation 3.

SpiceMix setup

We follow instructions given in the SpiceMix paper (Chidester et al. 2023) and SpiceMix GitHub repository* and
preprocess the Visium dataset as follows. First, all genes that are expressed in less than 10% of spots are removed.
Second, all counts are log-normalized to a target UMI count of 10, 000 per cell. Third, the neighbourhood graph is
derived by connecting each spot with its 6 closest neighbors. Afther these transformations, SpiceMix is run with the
default parameters for 200 epochs, with the number of metagenes set to the number of hidden dimensions used in
SIID and STdeconvolve .

Computing cell type proportion matrix

We first map latent factors inferred from SIID to true cell types gene expressions to find the best mapping between
the latent factors and the cell types by a greedy match process. Given that correspondence we rearrange the columns
of mixture proportion matrix P to match the true cell type proportions. A similar approach is used to find the best
order for cluster mixture proportions from STdeconvolve . Finally, we use Jensen-Shannon divergence (Menéndez
et al. 1997) (JS divergence) to evaluate the quality of predicted cell type mixture proportions when compared to
the true mixture proportions. A lower JS divergence signifies that the predicted mixture proportion is closer to the
ground truth.

B.3 Evaluating the effect of spatial mapping matrix in SIID
B.3.1 Effect of noisy spatial mapping matrix

We evaluate the reliability of spatial mapping in the resulting imputation and deconvolution performance by intro-
ducing noise to the mapping matrix I. To control the level of noise, we randomly select 7 percent of aligned spot
pairs, i.e. entries (i, j) where I'[i, j] = 1, and swap with a Xenium-to-Visium spot pair (i’, j*) such that I'(i’, j*) = 0,
resulting in the noisy spatial mapping matrix I where I'"[i’, j’] = 1, and I'"[i,j] = 0. In simulation we vary
7 € {0,10,20,...100} where 7 = 0 means I = I, and 7 = 100 means all the spatial mappings are swapped in I".
We observe SIID yields comparable R? scores with different levels of noise introduced to I (Supplemental Figure S2).
However the JS divergence, which measures the deconvolution performance for the Visium spots, increases as noise
in the spatial mapping rises, indicating poorer deconvolution performance as the spatial mapping matrix becomes
less reliable.

3https://github.com/JEFworks-Lab/STdeconvolve
4https: //github.com/ma-compbio/spicemix
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B.3.2 Effect of non-rigid transformation on SIID

To assess the effect of physical distortion that occurs during sample preparation in spatial transcriptomics, we per-
formed an additional simulation where we warped and rotated the coordinates of the Xenium slice to create a simu-
lated Visium slice. Specifically, we applied a sinusoidal distortion to 2D coordinates, where the horizontal displace-
ment follows x” = x+A, sin (27y/A,) and the vertical displacement follows y’ = y+A,, cos (27x/Ay). The parameters
Ay =30 and A, = 20 control the amplitude of distortion in each direction, while A, = 200 and A, = 200 determine
the spatial wavelengths of the oscillations. This creates a bidirectional wave-like deformation, where points are dis-
placed horizontally based on their y-coordinate with period A,, and displaced vertically based on their x-coordinate
with period A4, resulting in a sinusoidal grid distortion with intersecting wave patterns. After such a transformation,
we applied a rotation of 6 of 30 degrees (see Supplemental Figure S4A).

We recompute I',, based on the transformed spatial coordinates. We ran SIID using T',, and compared to the
results obtained using the unaltered spatial mapping matrix I. We compared the three reconstructed matrices —
namely, the cell type profile matrix Q, the Xenium spot to cell type assignment matrix Px, and the Visium spot to
cell type assignment matrix Py — with their corresponding ground truth. We performed 10-fold cross validation
using 90% of the Xenium genes for training and using the remaining 10% for testing. Specifically, we compared the
row-wise correlation coefficient of each matrix: for Q, this reflects accurate reconstruction of the cell type profile,
and similarly for Px and Py, this reflects accurate reconstruction of the cell type assignment for each Xenium spots
and Visium spots, respectively. We observe that the use of misaligned spatial mapping matrix I',, does not alter
the performance for reconstructing the Q and Px matrices, indicating robustness of those reconstructions to spatial
misalignment. However, we observe a marked drop in performance for the Py matrix reconstruction, indicating the
poor reconstruction of the cell type proportion in the Visium spots across all ten folds (Supplemental Figure S4B).

B.4 Execution time and memory usage

We measure the time and memory usage for running SIID and Tangram by profiling the execution of both the tools
using Python’s time and tracemalloc modules. We note that the recorded time and peak memory usage for different
simulation configurations remain relatively stable across different levels of coverage, grid sizes, and cluster counts,
indicating that computational costs are scalable across these parameters. While SIID requires more execution time
than Tangram , Tangram requires significantly higher memory (Supplemental Figure S7).

B.5 Evaluation of spatially variable coverage

We evaluated the imputation performance of SIID on a simulated dataset (with [ = 10, h = 8) and with the coverage p
varying across space (SIID recovers the cell type expression in simulated dataset). Specifically, we set p(x) = —~—=min—
to be a function of the x-coordinate of the Xenium spot (Supplemental Figure S3A). For both SIID and Tangran}aﬁ , the
overall R? score using spatially variable coverage p(x) is slightly higher (Supplemental Figure S3B) than the R? score
attained with a constant coverage (p = 0.5).

B.6 Evaluation of platform scaling factor

We evaluate the effect of platform scaling in the performance of SIID and Tangram . We use platform scaling while
simulating the Xenium and Visium datasets by scaling the expression of each gene by a gene-specific factor that is
constant across all cells. To emulate the real data, we first measure the platform scaling factors for the shared genes
between the BRCA Xenium and Visium data (Supplemental Figure S11A). Later, we sample from this empirical
distribution of platform scaling factors to simulate the gene expression of the Visium data. While running SIID, we
enable platform scaling (Implementation, parameter inference and imputing missing genes). We observe that SIID
achieves a superior R? score (Supplemental Figure S11B) as compared to Tangram in imputing gene expression for
the holdout genes in Xenium dataset.

C Detailed benchmarking information for real data

In this section, we describe detailed setups for running our method and other benchmarked methods over real data.



C.1 Downloading and preprocessing datasets

BRCA pair. We downloaded the following datasets from 10x Genomics website®: Xenium In Situ Sample 1, Replicate
1; Visium Spatial; FRP (Fixed RNA Profiling) as the scRNA-seq pairing. We also download the cell type annotation
for FRP and Xenium in the same page.

CRC pair. We downloaded the following datasets from 10x Genomics website®: Visium CytAssist V2, Sample P2
CRC; Xenium In Situ, Sample P2 CRC; and Chromium Single Cell Flex, aggregated (as the scRNA-seq pairing). The
aggregated Chromium dataset contains scRNA-seq data from 8 different samples, and we subset the it to only cells
collected from the matching Sample P2 CRC (indices 1, 3, 5 and 7).

Slice Alignment. For the BRCA pair, we follow the suggestion in the data paper (Janesick et al. 2023) and manually
annotate 5 pairs of key points on both slices, then compute a rigid transformation minimizing distance between these
key point pairs (also known as Orthogonal Procrustes problem) (Gower and Dijksterhuis 2004). For the CRC pair,
we run PASTE2 (Liu et al. 2023) with certain changes. Specifically, we create a grid of 60um*60um over the original
Xenium slice roughly matching the size of Visium spots (65um hexagonal). For each 60pym*60um tile in the slice,
we convert all cells in this tile to a Xenium pseudo-spot. The gene expression of this pseudo-spot is the sum of all
covered cells, and its spatial location is the weighted center of mass (by total UMI counts). Next, we run PASTE2 to
align the Visium slice with the converted Xenium pseudo-slice and compute a rigid transformation by solving the
Procrustes problem minimizing the distance of each Visium spot to the barycenter in Xenium coordinate.

Caveats. There are both biological and technical sources of variation between adjacent slices that complicate the
alignment. Biologically, the physical distance (often tens of microns) between adjacent tissue sections can lead to
substantial differences in transcriptional profiles at the corresponding spatial locations in each slice, particularly
in tissue regions with spatially heterogeneous cell types. In this scenario, recovering the true alignment between
the slices is extremely difficult. Technically, misalignment can arise from a range of artifacts during sample prepa-
ration, mounting and imaging. For example, tissue sections can be shredded, torn, stretched or squashed, or may
naturally degrade during processing. Additionally, SRT technologies are not perfect and can introduce significant
noise and bias during data acquisition. Our experiments with non-rigid transformations and rotations presented in
Supplemental Methods B.3 and C.5 are representative of such realistic misalignment scenarios.

C.2 Dataset statistics

Supplemental Table S1 contains detailed statistics regarding the data used for benchmarking. The rows indicated as
(in-Xenium-panel) are the statistics for Visium dataset when restricted to paired Xenium panel.

Datasets Component No. of Spots  Panel Size Total Counts Count/Gene Count/Spot
BRCA Xenium 167,780 313 32,102,956 102,565 191
Visium 4,992 (WT) 115,297,808 6,375 23,096

(in-Xenium-panel) 4,992 307 4,123,612 13,431 826

scRNA-seq 30,365 (WT) 204,904,784 11,331 6,748

CRC Xenium 340,837 422 42,073,224 99,699 123
Visium 4,269 (WT) 404,804,672 22,383 94,824

(in-Xenium-panel) 4,269 408 18,012,420 44,148 4,219

scRNA-seq 41,993 (WT) 149,924,208 8,291 3,575

Table S1: Dataset statistics. (in-Xenium-panel) denotes Visium dataset subsetted to matching Xenium gene panel.
WT stands for whole-transcriptomic (18 thousand genes).

Shttps://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
®https://www.10xgenomics.com/products/visium-hd-spatial-gene-expression/dataset-human-crc
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C.3 Hyperparameters of SIID

SIID contains a number of hyperparameters. Most of these parameters are chosen based on common sense and a
small-scale parameter search.

« Number of latent factors h determines the size of P and Q of the factorization, and is loosely based on how
many cell types the datasets have. In simulation, A is set to match the data generation process, and in real data,
it is set to 20 or 40 for BRCA and CRC respectively. This is the only dataset-specific parameter we employ.

« We described platform scaling technique in Implementation, parameter inference and imputing missing genes
as a way to model platform-specific count modeling between Xenium and Visium datasets. This is disabled for
simulation both in dataset generation and inference, and is enabled when running with real data.

« SIID uses entropy regularization (Implementation, parameter inference and imputing missing genes) to pro-
mote assigning Xenium cells to smaller number of latent factors. With fixed total of 5,000 training epochs
and regularization weight exp(k/A) where nepoch is the epoch number, higher A means weaker regularization
strength. We use A = 1000 for real data imputation (Imputing missing genes in cancer SRT data), and A = 500
elsewhere.

« SIID has the flexibility of using genes inside and outside the targeted panel during inference. For our runs, we
choose to not use Visium genes outside Xenium panel (except those in holdout set for imputation).

« SIID is run with 3 restarts, and the run with lowest total loss is used for prediction. It also uses a £, regularization
over raw model parameters (Implementation, parameter inference and imputing missing genes), whose weight
is set to 107> for all runs. The model is optimized with Adam optimizer with learning rate of 0.05.

We also benchmark performance of SIID under different hyperparameter choices. Specifically, for both BRCA and
CRC datasets, we test combinations of the following parameter values:

« Number of latent factors h is chosen from (5, 10, 20, 30, 40, 50).

« The entropy regularization strength A is chosen from (300, 500, 1000, 1500, 2000) for both datasets. The number
of training epochs are fixed at 5000.

+ The number of random restarts being 1 or 3.

We present the results for these control experiments in Supplemental Methods D.1.

C.4 Setup for benchmarking imputation

We select the methods to benchmark by the top performers in (Li et al. 2022), excluding SpaOTsc (Cang and Nie 2020)
as it requires a pairwise distance matrix over Xenium data with over 100K cells, and excluding SpaGE (Abdelaal et al.
2020) as it operates over log-normalized data while we benchmark imputation with raw counts. We additionally select
SLAT (Xia et al. 2023) and SANTO (Li et al. 2024) as representatives of SRT-alignment-based imputation methods.

« Tangram (Biancalani et al. 2021) is run with Visium dataset as the single-cell data, and the Xenium dataset as
the spatial data with default parameter and 1000 training epoches. We also run Tangram in two configurations,
once in default mode (cell mode), and once in cluster mode with cluster labels generated by running Leiden
clustering (Traag et al. 2019) in scanpy package (Wolf et al. 2018) with default parameters. Tangram with
scRNA-seq pairing is run in the same way, except that we downsample the scRNA-seq dataset for CRC by 2x
when Tangram is run in cell mode. This is so it could finish in a reasonable amount of time.

« gimVI (Lopez et al. 2019) is run in default parameters with the same number of latent factors as SIID, and
optimized for 200 epochs. As advised by authors, We also remove empty cell or spots before optimization.
However, we could not finish optimization due to model parameters becoming NaN frequently in the middle
of the optimization after a large number of attempts and trying over many different configurations.

« SLAT (Xia et al. 2023) is run with parameters recommended for Xenium-Visium pairing (120 neighbors for
building kNN graph for Xenium, 5 neighbors for building kNN graph for Visium). For each Xenium cell (even
outside of Visium-Xenium overlap area), SLAT matches it to a Visium spot. Imputation of a holdout gene is
performed by copying the expression of such holdout gene on matched Visium spot to the Xenium cells.



« SANTO (Li et al. 2024) proposes an imputation strategy from two aligned SRT slices based on Poisson regres-
sion, which we re-implement and benchmark. For each holdout gene g, we train a Poisson regression model of
form I';V; ~ Pois(Ax;D); here, I denotes the set of Xenium cell that maps to a Visium spot (in the intersecting
area of Visium and Xenium slices), Ax; and I'; denote Ax and I' subseted to I respectively, V; denotes the Vi-
sium expression for the holdout gene, and D € RISX! is the combination coefficients for imputing the holdout
gene. We use the alignment as described in Setup and evaluation, and identical mapping I" as used in SIID. We
impute the expression for all Xenium cells (inside or outside I) after training and evaluate correlation on all
cells.

« For Baseline A, the estimated expression for a Xenium gene g is given by I'Vy, where V; refer to the expression
of gene g in Visium. Intuitively, the Visium spot expression is copied to each Xenium cell mapped to that
spot through I'. Xenium cells that are not mapped to a Visium spot (as the datasets are partially aligned) are
assigned zero expression.

+ For Baseline B, let Cx = Ax1|g,| be the observed total count per Xenium cell. If a Xenium cell i is mapped to

Visium spot j, we let w[i] = #El]cx[k] be the weight of cell i among all cells mapped to the same spot. The
Tles]-

estimate for a Xenium gene ¢ is then given by computing the estimate for Baseline A, then scale by w[i] for

each cell i. Intuitively, this means the counts in Visium spot j is distributed among Xenium cells mapped to

that spot proportional to observed Xenium counts.

« For Baseline C, from the outputs of Baseline A, we apply a kNN smoothing where the expression of each
Xenium cell is calculated as the average of its 120 nearest neighbors. We then follow the partition-scaling
steps as described in Baseline B.

« For Baseline D, from the outputs of Baseline A, we first perform the partition-scaling as done in Baseline B,
then apply kNN smoothing as described above.

C.5 Evaluating the effect of noise in spatial mapping

We follow the identical setup as in Supplemental Methods B.3 to evaluate the effect of changing I' in imputation
performance. See Supplemental Figure S2C and Supplemental Figure S2D for their effect on imputing real datasets.

We also evaluated the consequences of distortion of the mapping matrix I" on both datasets. For this test, we run
SIID with identical hyperparameters, but rotate the Visium slice clockwise around its centroid from 10 to 90 degrees
in increments of 10. Larger rotation means most Xenium cells are mapped to more distant Visium spots. We observe
that SIID’s performance decreases as the angle of rotation increases, but that overall performance does not degrade
substantially (Supplemental Figure S6).

C.6 Consolidated runtime information for imputation runs

SIID are benchmarked on a single Tesla P100 GPU with 12GB memory, and most other methods (if CPU-Bound) are
run on a cluster with 20 Xeon E5-2690 CPUs. SIID is run five times per fold with 3 restarts each and the reported
values in Table 1 and Supplemental Table S2 are averaged across 5 runs. Average runtime for the benchmarked
methods for each fold in seconds can be found in Supplemental Table S2, including Visium pairing and scRNA-seq
pairing. Without the 2x downsamping in CRC scRNA-seq dataset, Tangram cannot finish within 2 days or 172,800
seconds. For Tangram in cluster mode, we do not include the time taken for running Leiden clusters.

Tangram (Visium) Tangram (scRNA-seq)
Dataset SIID (3runs) cell mode cluster mode  SLAT SANTO cell mode cluster mode
BRCA 403s 8,632s <300s < 300s 4,020s 43,309s < 300s
CRC 965s 17,232s < 300s 429s 12,814s 65,240s < 300s

Table S2: Comparison of average run time in seconds per fold for the benchmarked methods.



We note that Tangram in cell mode for BRCA and CRC datasets takes 2.5 and 5 hours to complete (Supplemental
Table S2), in part because running the Tangram model on GPUs requires a large amount of GPU memory to store the
full |Sx |X|Sy | entries of the mapping matrix M. In contrast, SIID stores only h(|Sx|+|Gy|) = h|Sx| (since |Sx|> |Gy])
parameters for P and Q, around 100x fewer than Tangram for our benchmarking datasets.

To further evaluate scalability of SIID, we benchmark the time and peak GPU memory for varying sizes of input
and latent space. Since most work is done on the GPU, CPU memory is not a constraint for SIID. Specifically, we ran
SIID on the BRCA dataset in the following settings:

« Setting h, the number of latent factors to 20, 40, 60, 80 and 100.
« Setting the number |Gy | of Visium genes in inference to 400, 800, 1200, 1600, 2000.

« More Xenium cells: We make between 1 and 5 copies of the Xenium cells. The copies have their spatial location
shifted by N(0, 10) in both dimensions and gene count randomized by a Poisson distribution.

+ More Visium spots (roughly corresponding to higher grid resolution): Similar to the above experiment, but
location shifts are 5 times larger.

As shown in Supplemental Figure S5, SIID takes up to 20% more time and GPU memory with up to 5x of latent
factors, more genes, or larger Visium dataset. However, the resource usage scales roughly linearly as the size of
the Xenium dataset. This is consistent with our proposed theory that the size of the Xenium dataset |Sx||Gx| is the
dominating factor in evaluating the time and memory usage of SIID.

C.7 SIID identifies cell subtypes in stromal population from BRCA

We start with the paired single-cell RNA-seq dataset (Supplemental Figure S13A) and perform an unsupervised
clustering followed by delineating marker genes for each unsupervised cluster (Supplemental Figure S13B). We note
that many of these differentially expressed genes are not present in the Xenium pre-defined panel (marked in red)
which in turn makes it impossible to delineate cell subtypes of this compartment. To select the set of candidate
genes for imputation, we followed the standard procedure implemented in the scanpy (Wolf et al. 2018) package.
Specifically, we identified highly variable genes by calculating gene-wise statistics and then selecting those that met
the criteria of having a mean expression between 0.0125 and 3, and a dispersion (variability) greater than 0.5. This
procedure produces 3,000 highly variable genes out of around 18,000. We next run SIID to impute the expression
of these genes from the companion Visium dataset. The stromal cells (Supplemental Figure S13C) in the imputed
Xenium dataset is further sub clustered into four subgroups (Supplemental Figure S13D).

We further analyzed the spatial co-localization of the Stromal and T-cell hybrid cell type with stromal cell sub
types annotated by SIID in BRCA Xenium data. After overlaying the Stromal-T cell hybrid spots with stromal subtypes
on the Xenium spatial map (Supplemental Figure S14), we observed that these cell types share spatial neighborhoods.
To quantify this, we computed the spatial co-occurrence between Stromal-T cell hybrid cells and Stromal subtypes
using Squidpy’s squidpy.gr.co_occurrence’(Supplemental Figure S14B). Across various inter-spot distances, all
stromal subtypes—except adipocyte-rich stroma—showed comparable co-occurrence profiles. In the imputed Xe-
nium data, we further examined genes from the immune-stromal niche signature and found them expressed in the
Stroma-T cell hybrid cluster as well (Supplemental Figure S14C), suggesting that spots from both cell types share an
overlapping gene-expression program.

C.8 SIID with Negative Binomial Counts

Modeling. Inspired by gimVI(Lopez et al. 2019), we implement an alternative model where we assume that Xenium
counts follow a Poisson distribution, while Visium counts follow a negative binomial distribution. The negative
binomial mean Ay = M?PQ is the same as in the count-scaled reparameterization described in A shared cell type
model between paired SRTs. The overdispersion ay is gene-specific but consistent between spots. Formally, the loss
function is

PoiLoss(Ax; diag(N)PQx) + NegBinomLoss(Ay; M PQ, 1;s,, |}

"https://squidpy.readthedocs.io/en/stable/api/squidpy.gr.co_occurrence.html
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Here, ay € RLGVl is the overdispersion for each gene, and the matrix 1, 5v|a‘T, indicates that all spots for the same
gene share the same overdispersion parameter. For a given spot-gene pair, with observed count X, inferred mean m
and inferred verdispersion «, the loss function (negative log-likelihood) is defined as:

NegBinomLoss(X | m, ) = NegBinomNLL(X | p,r)

—InT(X +7) +InT(r) + In(X!) — rIn(p) — X In(1 — p)
—InT(X + 1/a) + InT(1/a) + In(X!) + In(1 + am)/a + X In(1 + 1/am)

where r = 1/a and p = 1/(1 + am) are the parameters of the negative binomial in its natural parameterization, and I’
is the Gamma function that extends factorial to complex numbers.

Implementation. We implement this version of SIID, optimizing ay alongside other parameters such as P, Q and
M. Since overdispersion cannot be negative, we similarly perform gradient descent on log ary instead.

Evaluation. We evaluate this version of SIID on two real datasets in the identical setup as described in Imputing
missing genes in cancer SRT data. We obtain similar performance on BRCA dataset (average gene-wise R? of 0.2498,
compared to 0.2527 of original version) and slightly worse on CRC dataset (average gene-wise R? of 0.2013, compared
to 0.2248 of the original version). Evaluation on other metrics can be found in Supplemental Table S6 under the
column “NegBinom”.

D Additional Results

D.1 Reporting R? scores with different hyperparameters

As outline in the second half of Supplemental Methods C.4, we benchmark SIID on two real datasets with varying
hyperparameters. The final configuration used elsewhere is highlighted in bold.

Entropy Regularization Strength
Latent Factors Restarts A=300 A=500 A=1000 A=1500 A =2000

h=5 - 0.1663 0.1739 0.1850 0.1835 0.1824
3 0.1668 0.1706 0.1897 0.1875 0.1879
h=10 - 0.1821 0.2075 0.2313 0.2298 0.2298
3 0.1911 0.2068 0.2309 0.2317 0.2298
h =20 - 0.1484 0.1689 0.2477 0.2503 0.2490
3 0.1454 0.1546 0.2527 0.2536 0.2551
h =30 - 0.1145 0.1312 0.2530 0.2495 0.2469
3 0.1210 0.1243 0.2604 0.2568 0.2529
h =40 - 0.1001 0.1241 0.2386 0.2412 0.2393
3 0.1002 0.1236 0.2457 0.2439 0.2401
h =50 - 0.0902 0.1178 0.2269 0.2250 0.2246
3 0.0928 0.1179 0.2329 0.2376 0.2308

Table S3: Mean holdout R? scores for SIID on the BRCA dataset with varying parameters.



D.1 Reporting R? scores with different hyperparameters

Entropy Regularization Strength

Latent Factors Restarts A =300 A=500 A=1000 A=1500 A=2000

h=5 - 0.1401 0.1423 0.1513 0.1513 0.1504
3 0.1423 0.1444 0.1522 0.1529 0.1542
h=10 - 0.1575 0.1620 0.1786 0.1774 0.1776
3 0.1602 0.1649 0.1792 0.1795 0.1792
h =20 - 0.1674 0.1770 0.2116 0.2125 0.2119
3 0.1678 0.1775 0.2125 0.2143 0.2129
h =30 - 0.1655 0.1753 0.2207 0.2198 0.2210
3 0.1680 0.1804 0.2224 0.2225 0.2227
h =40 - 0.1541 0.1700 0.2209 0.2206 0.2227
3 0.1576 0.1713 0.2248 0.2229 0.2255
h =50 - 0.1353 0.1479 0.2188 0.2168 0.2188
3 0.1359 0.1515 0.2217 0.2221 0.2228

Table S4: Mean holdout R? scores for SIID on the CRC dataset with varying parameters.



D.2 Reporting other correlation measures

We selected R? as our primary metric due to its use in previous studies on gene imputation (Biancalani et al. 2021).
Additionally, we note that the values imputed by SIID (or Tangram) are not integer counts, making count-based
correlation measures not directly applicable either. To strengthen the conclusions of the manuscript, in Supplemental
Table S5, we further evaluate SIID by four other metrics as suggested and detailed in a recent benchmarking paper (Li
et al. 2022) — Pearson cross correlation (PCC), structural similarity index measure (SSIM), root mean square error
(RMSE), and Jensen-Shannon (JS) divergence. As shown in Supplemental Table S5, SIID has the best performance

by all listed measures.

Tangram
Metric Dataset SIID cell mode cluster mode SLAT SANTO
R? ) BRCA 0.2527 0.1874 0.1557 0.0688 0.1042
CRC 0.2248 0.1789 0.1382 0.0608 0.0727
PCCT BRCA 0.4470 0.3789 0.3402 0.2015 0.2620
CRC 0.4099 0.3644 0.2995 0.1997 0.2236
SSIM 7 BRCA 0.3456 0.3112 0.1904 0.1192 0.2239
CRC 0.4191 0.3905 0.2761 0.1017 0.3437
RMSE | BRCA 1.0261 1.0952 1.1317 1.2542 1.2027
CRC 1.0609 1.1089 1.1658 1.2596 1.2399
IS BRCA 7.1959 8.3165 8.3599 12.4704 8.9354
CRC 8.2665 9.1641 9.2956 12.4493 9.8258

Table S5: Comparison of selected methods for imputing Xenium gene expression from paired Visium data using
different metrics. The arrow following the metric name indicates whether higher is better (T) or lower is better (]).

Bold indicates best performance in each metric and dataset pair.

With results from Tangram paired with scRNA-seq as well as SIID with Negative Binomial counts, SIID with

Poisson counts model has the best performance in all but one measure where it’s second best.
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D.2  Reporting other correlation measures 12

SIID Tangram (Visium) Tangram (scRNA-seq)

Metric ~ Dataset Poisson NegBinom cell cluster SLAT SANTO cell cluster
R*7T BRCA  0.2527 0.2498 0.1874 0.1557 0.0688 0.1042  0.2194 0.2203
CRC 0.2248 0.2013 0.1789 0.1382 0.0608 0.0727  0.1960 0.1823

PCCT BRCA  0.4470 0.4431 0.3789 0.3402 0.2015 0.2620  0.4126 0.4176
CRC  0.4099 0.3786  0.3644 0.2995 0.1997 0.2236  0.3794 0.3700

SSIM T BRCA 0.3456 0.3429 0.3112 0.1904 0.1192 0.2239  0.4930 0.2994
CRC 0.4191 0.3953  0.3905 0.2761 0.1017 0.3437 0.5786 0.3494

RMSE | BRCA 1.0261 1.0296 1.0952 1.1317 1.2542 1.2027  1.0609 1.0575
CRC 1.0609 1.0900 1.1089 1.1658 1.2596 1.2399  1.0926 1.1038

IS BRCA 7.1959 7.2051 8.3165 8.3599  12.4704 8.9354  7.8144 7.8562
CRC  8.2665 8.4766  9.1641 9.2956  12.4493 9.8258  8.8543 8.8650

Table S6: Similar to Supplemental Table S5, with scRNA-seq pairing results from Tangram and SIID with Negative
Binomial counts (Supplemental Methods C.8) also reported. The arrow following the metric name indicates whether
higher is better (T) or lower is better (]). Bold indicates best performance in each metric and dataset pair.
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