
Supplemental Methods

Contents
A Proof of the Reparameterization Lemma 2

B Benchmarking on simulated Xenium and Visium data 2
B.1 Steps for generating simulated Xenium and Visium data . 2
B.2 Benchmarking deconvolution results . 3
B.3 Evaluating the e!ect of spatial mapping matrix in SIID . 3
B.4 Execution time and memory usage . 4
B.5 Evaluation of spatially variable coverage . 4
B.6 Evaluation of platform scaling factor . 4

C Detailed benchmarking information for real data 4
C.1 Downloading and preprocessing datasets . 5
C.2 Dataset statistics . 5
C.3 Hyperparameters of SIID . 6
C.4 Setup for benchmarking imputation . 6
C.5 Evaluating the e!ect of noise in spatial mapping . 7
C.6 Consolidated runtime information for imputation runs . 7
C.7 SIID identi”es cell subtypes in stromal population from BRCA . 8
C.8 SIID with Negative Binomial Counts . 8

D Additional Results 9
D.1 Reporting 𝐿2 scores with di!erent hyperparameters . 9
D.2 Reporting other correlation measures . 11

1

A Proof of the Reparameterization Lemma
To formally prove Lemma 1 we require no empty rows (rows will all zeros) in𝑀 and 𝑁 . #is means there are no
spots with zero inferred expression, and there are no latent factors with zero inferred expression.
Lemma. Given 𝑂𝐿 = 𝑀𝑁 where𝑀 and 𝑁 has no empty rows and𝑀 ,𝑁 → 0, there exists 𝑃,𝑄,𝑅 with 𝑃,𝑄,𝑅 →

0, 𝑃!𝑀 = ! |𝑁𝐿 | ,𝑄! |𝑂𝑀 | = !𝑀 as de”ned in Methods - A shared cell type model between paired SRTs, such that
𝑂𝐿 = diag(𝑅)𝑃𝑄 , and vice versa.

Proof. #e forward direction can be proved in two steps, starting with𝑀 and 𝑁 :

• Let 𝐿𝑃 = 𝑁! |𝑂𝑀 | be the row sum of 𝑁 . Since 𝑁 has no empty rows, 𝐿𝑃 > 0 and let𝑀1 = 𝑀 diag(𝐿𝑃),𝑄 =
diag(1/𝐿𝑃)𝑁 . We have𝑀𝑁 =𝑀1𝑄 where Q is already row-normalized.

• Let 𝑅 = 𝑀1!𝑀 be the row sum of 𝑀1. We can further set 𝑃 = diag(1/𝑅)𝑀1 knowing 𝑅 > 0, and since
diag(𝑅)𝑃 =𝑀1, we have diag(𝑅)𝑃𝑄 =𝑀1𝑄 =𝑀𝑁 .

#e reverse direction can be proved by se$ing𝑀 = diag(𝑅)𝑃,𝑁 = 𝑄 from which we get𝑀𝑁 = diag(𝑅)𝑃𝑄 . ⊋

B Benchmarking on simulated Xenium and Visium data

B.1 Steps for generating simulated Xenium and Visium data
We collect the paired scRNA-seq data, Visium data, and Xenium data from the BRCA dataset (Janesick et al. 2023) as
described in Results - Setup and evaluation. Following the notation of Methods - A shared cell type model between
paired SRTs the simulated Xenium slice measures genes in 𝑆𝑄 over cell locations 𝑇𝑄 , the simulated Visium slice
measures genes in 𝑆𝑅 over spot locations 𝑇𝑅 , and 𝑆𝑄 ↑ 𝑆𝑅 . We further cluster the cells in the scRNA-seq data and
selected 𝑈 distinct clusters. Our simulation process contains the following steps.

• Step 1: Checkerboard style spatial clusters for Xenium spatial locations We ”rst assign each cell in 𝑉
to one of𝑈 clusters. #is assignment is done by dividing the coordinates of 𝑇𝑄 into square grids, then assigning
all cells in each grid to the same cluster such that that cells from adjacent grids belong to di!erent clusters.
Such assignment will create a checkerboard style (Jackson et al. 2024) pa$ern based on 𝑇𝑄 . In this simulation
a larger fraction of neighboring cells belong to di!erent clusters, leading most Visium spots to contain cells
from multiple cell types. Consequently state-of-the-art spatial clustering algorithms struggle to accurately
deconvolve the cluster mixture proportions (Jackson et al. 2024) from this simulated data. #e spatial location
to cluster assignment is represented as a matrix 𝑃𝑄 , where 𝑃𝑄 ↓ {0, 1}|𝑁𝐿 |↔𝑀 .

• Step 2: Constructing the Poisson mean for the latent gene expression matrix Unlike real data, in
simulation we can create the Poisson mean of the latent gene expression matrix 𝑂𝐿 ↓ ℕ |𝑁𝐿 |↔ |𝑂𝑀 | . Given
the scRNA-seq gene expression matrix and the cell to cluster assignments, we ”rst compute the normalized
average gene expression for each cluster, represented by 𝑄 ↓ ℝ𝑀↔ |𝑂𝑀 | , s.t. 𝑄! |𝑂𝑀 | = !𝑀 . Using the Xenium
spatial location to cluster assignment from step 1, the simulated latent gene expression matrix is sampled from
a Poisson mean 𝑂𝐿 = diag (𝑅)𝑃𝑄𝑄 , where 𝑅 ↓ ℕ |𝑁𝐿 | denotes the expected gene count for each Xenium cell.

• Step 3: Simulating Xenium gene expression matrix #e Xenium expression matrix 𝑂𝑄 ↓ ℝ |𝑁𝐿 |↔ |𝑂𝐿 | is a
submatrix of the latent gene expression matrix 𝑂𝐿 ↗ Pois(𝑂𝐿) where columns are restricted to gene set 𝑆𝑄 .

• Step 4: Simulating Visium gene expression matrixWe use a pre-computed mapping matrix % to compute
the Poisson mean of Visium gene expression as 𝑂𝑅 = %𝑆𝑂𝐿 , meaning the Poisson mean for each Visium spot
equals the sum of Poisson mean from each Xenium cell mapped to that spot. We then sample 𝑂𝑅 ↗ Pois(𝑂𝑅)
independently of 𝑂𝐿 . We additionally construct cluster mixture proportion matrix 𝑃𝑅 ↓ [0, 1] |𝑁𝑀 |↔𝑀 by row-
normalizing %𝑆 diag (𝑅)𝑃𝑄 .

Upon simulating the Xenium count matrix 𝑂𝑄 and Visium count matrix 𝑂𝑅 , we can construct an instance
((𝑂𝑄 , 𝑇𝑄), (𝑂𝑅 , 𝑇𝑅), %) for Reparameterized Paired NMF Inference problem using the imputation setup described in
Results - Imputation setup and holdout evaluation for one of the 10 folds. We then run SIID with 𝑈 latent factors. We
measure the accuracy of SIID, by comparing the estimated parameters (𝑃,𝑄,𝑅 ,𝑊) with the ground-truth parameters
as follows,

2

• We compute Jensen-Shannon divergence between 𝑃 and 𝑃𝑄 to measure the accuracy of Xenium spot to cluster
assignment.

• To evaluate the cluster assignment for Visium spots, we ”rst calculate 𝑃𝑅 = 𝑊𝑆𝑃 using estimates from SIID.
#e row-normalized 𝑃𝑅 is compared with 𝑃𝑅 as de”ned above in Step 4 of the simulation.

• We evaluate the gene expression for inferred clusters by comparing 𝑄 to 𝑄 . Here we compute the pairwise
Pearson correlation coe&cients between the rows of 𝑄 , and 𝑄 .

• We also evaluate the performance of ourmodel in imputing holdout genes in Xenium panel by the same process
described in Results - Imputation setup and holdout evaluation.

B.2 Benchmarking deconvolution results
STdeconvolve setup

To do a fair comparison with SIID, we run STdeconvolve on Visium data on the shared genes between Xenium and
Visium data. As the remaining genes are low in number we did not perform any gene selection before running
STdeconvolve . #e other steps are same as described in STdeconvolve documentation 3.

SpiceMix setup

We follow instructions given in the SpiceMix paper (Chidester et al. 2023) and SpiceMix GitHub repository4 and
preprocess the Visium dataset as follows. First, all genes that are expressed in less than 10% of spots are removed.
Second, all counts are log-normalized to a target UMI count of 10, 000 per cell. #ird, the neighbourhood graph is
derived by connecting each spot with its 6 closest neighbors. A’her these transformations, SpiceMix is run with the
default parameters for 200 epochs, with the number of metagenes set to the number of hidden dimensions used in
SIID and STdeconvolve .

Computing cell type proportion matrix

We ”rst map latent factors inferred from SIID to true cell types gene expressions to ”nd the best mapping between
the latent factors and the cell types by a greedy match process. Given that correspondence we rearrange the columns
of mixture proportion matrix 𝑃 to match the true cell type proportions. A similar approach is used to ”nd the best
order for cluster mixture proportions from STdeconvolve . Finally, we use Jensen-Shannon divergence (Menéndez
et al. 1997) (JS divergence) to evaluate the quality of predicted cell type mixture proportions when compared to
the true mixture proportions. A lower JS divergence signi”es that the predicted mixture proportion is closer to the
ground truth.

B.3 Evaluating the e!ect of spatial mapping matrix in SIID
B.3.1 E!ect of noisy spatial mapping matrix

We evaluate the reliability of spatial mapping in the resulting imputation and deconvolution performance by intro-
ducing noise to the mapping matrix %. To control the level of noise, we randomly select 𝑋 percent of aligned spot
pairs, i.e. entries (𝑌, 𝑍) where %[𝑌, 𝑍] = 1, and swap with a Xenium-to-Visium spot pair (𝑌↘, 𝑍 ↘) such that %(𝑌↘, 𝑍 ↘) = 0,
resulting in the noisy spatial mapping matrix %↘ where %↘[𝑌↘, 𝑍 ↘] = 1, and %↘[𝑌, 𝑍] = 0. In simulation we vary
𝑋 ↓ {0, 10, 20, . . . 100} where 𝑋 = 0 means %↘ = %, and 𝑋 = 100 means all the spatial mappings are swapped in %↘.
We observe SIID yields comparable 𝐿2 scores with di!erent levels of noise introduced to % (Supplemental Figure S2).
However the JS divergence, which measures the deconvolution performance for the Visium spots, increases as noise
in the spatial mapping rises, indicating poorer deconvolution performance as the spatial mapping matrix becomes
less reliable.

3https://github.com/JEFworks-Lab/STdeconvolve
4https://github.com/ma-compbio/spicemix

3

https://github.com/JEFworks-Lab/STdeconvolve
https://github.com/ma-compbio/spicemix

B.3.2 E!ect of non-rigid transformation on SIID

To assess the e!ect of physical distortion that occurs during sample preparation in spatial transcriptomics, we per-
formed an additional simulation where we warped and rotated the coordinates of the Xenium slice to create a simu-
lated Visium slice. Speci”cally, we applied a sinusoidal distortion to 2D coordinates, where the horizontal displace-
ment follows 𝑎 ↘ = 𝑎 +𝑂𝑇 sin

(
2𝑏𝑐/𝑑𝑈

)
and the vertical displacement follows𝑐↘ = 𝑐+𝑂𝑈 cos (2𝑏𝑎/𝑑𝑇). #e parameters

𝑂𝑇 = 30 and 𝑂𝑈 = 20 control the amplitude of distortion in each direction, while 𝑑𝑇 = 200 and 𝑑𝑈 = 200 determine
the spatial wavelengths of the oscillations. #is creates a bidirectional wave-like deformation, where points are dis-
placed horizontally based on their 𝑐-coordinate with period 𝑑𝑈 , and displaced vertically based on their 𝑎-coordinate
with period 𝑑𝑇 , resulting in a sinusoidal grid distortion with intersecting wave pa$erns. A’er such a transformation,
we applied a rotation of 𝑒 of 30 degrees (see Supplemental Figure S4A).

We recompute %𝑉 based on the transformed spatial coordinates. We ran SIID using %𝑉 and compared to the
results obtained using the unaltered spatial mapping matrix %. We compared the three reconstructed matrices —
namely, the cell type pro”le matrix 𝑄 , the Xenium spot to cell type assignment matrix 𝑃𝑄 , and the Visium spot to
cell type assignment matrix 𝑃𝑅 — with their corresponding ground truth. We performed 10-fold cross validation
using 90% of the Xenium genes for training and using the remaining 10% for testing. Speci”cally, we compared the
row-wise correlation coe&cient of each matrix: for 𝑄 , this re(ects accurate reconstruction of the cell type pro”le,
and similarly for 𝑃𝑄 and 𝑃𝑅 , this re(ects accurate reconstruction of the cell type assignment for each Xenium spots
and Visium spots, respectively. We observe that the use of misaligned spatial mapping matrix %𝑉 does not alter
the performance for reconstructing the 𝑄 and 𝑃𝑄 matrices, indicating robustness of those reconstructions to spatial
misalignment. However, we observe a marked drop in performance for the 𝑃𝑅 matrix reconstruction, indicating the
poor reconstruction of the cell type proportion in the Visium spots across all ten folds (Supplemental Figure S4B).

B.4 Execution time and memory usage
We measure the time and memory usage for running SIID and Tangram by pro”ling the execution of both the tools
using Python’s time and tracemallocmodules. We note that the recorded time and peakmemory usage for di!erent
simulation con”gurations remain relatively stable across di!erent levels of coverage, grid sizes, and cluster counts,
indicating that computational costs are scalable across these parameters. While SIID requires more execution time
than Tangram , Tangram requires signi”cantly higher memory (Supplemental Figure S7).

B.5 Evaluation of spatially variable coverage
We evaluated the imputation performance of SIID on a simulated dataset (with 𝑓 = 10,𝑈 = 8) and with the coverage 𝑔
varying across space (SIID recovers the cell type expression in simulated dataset). Speci”cally, we set 𝑔(𝑎) = 𝑇≃𝑇min

𝑇max≃𝑇min
to be a function of the x-coordinate of the Xenium spot (Supplemental Figure S3A). For both SIID and Tangram , the
overall 𝐿2 score using spatially variable coverage 𝑔(𝑎) is slightly higher (Supplemental Figure S3B) than the 𝐿2 score
a$ained with a constant coverage (𝑔 = 0.5).

B.6 Evaluation of platform scaling factor
We evaluate the e!ect of platform scaling in the performance of SIID and Tangram . We use platform scaling while
simulating the Xenium and Visium datasets by scaling the expression of each gene by a gene-speci”c factor that is
constant across all cells. To emulate the real data, we ”rst measure the platform scaling factors for the shared genes
between the BRCA Xenium and Visium data (Supplemental Figure S11A). Later, we sample from this empirical
distribution of platform scaling factors to simulate the gene expression of the Visium data. While running SIID, we
enable platform scaling (Implementation, parameter inference and imputing missing genes). We observe that SIID
achieves a superior 𝐿2 score (Supplemental Figure S11B) as compared to Tangram in imputing gene expression for
the holdout genes in Xenium dataset.

C Detailed benchmarking information for real data
In this section, we describe detailed setups for running our method and other benchmarked methods over real data.

4

C.1 Downloading and preprocessing datasets
BRCA pair. We downloaded the following datasets from 10x Genomics website5: Xenium In Situ Sample 1, Replicate
1; Visium Spatial; FRP (Fixed RNA Pro”ling) as the scRNA-seq pairing. We also download the cell type annotation
for FRP and Xenium in the same page.

CRC pair. We downloaded the following datasets from 10x Genomics website6: Visium CytAssist V2, Sample P2
CRC; Xenium In Situ, Sample P2 CRC; and Chromium Single Cell Flex, aggregated (as the scRNA-seq pairing). #e
aggregated Chromium dataset contains scRNA-seq data from 8 di!erent samples, and we subset the it to only cells
collected from the matching Sample P2 CRC (indices 1, 3, 5 and 7).

Slice Alignment. For the BRCA pair, we follow the suggestion in the data paper (Janesick et al. 2023) andmanually
annotate 5 pairs of key points on both slices, then compute a rigid transformationminimizing distance between these
key point pairs (also known as Orthogonal Procrustes problem) (Gower and Dijksterhuis 2004). For the CRC pair,
we run PASTE2 (Liu et al. 2023) with certain changes. Speci”cally, we create a grid of 60𝑕m*60𝑕m over the original
Xenium slice roughly matching the size of Visium spots (65um hexagonal). For each 60𝑕m*60𝑕m tile in the slice,
we convert all cells in this tile to a Xenium pseudo-spot. #e gene expression of this pseudo-spot is the sum of all
covered cells, and its spatial location is the weighted center of mass (by total UMI counts). Next, we run PASTE2 to
align the Visium slice with the converted Xenium pseudo-slice and compute a rigid transformation by solving the
Procrustes problem minimizing the distance of each Visium spot to the barycenter in Xenium coordinate.

Caveats. #ere are both biological and technical sources of variation between adjacent slices that complicate the
alignment. Biologically, the physical distance (o’en tens of microns) between adjacent tissue sections can lead to
substantial di!erences in transcriptional pro”les at the corresponding spatial locations in each slice, particularly
in tissue regions with spatially heterogeneous cell types. In this scenario, recovering the true alignment between
the slices is extremely di&cult. Technically, misalignment can arise from a range of artifacts during sample prepa-
ration, mounting and imaging. For example, tissue sections can be shredded, torn, stretched or squashed, or may
naturally degrade during processing. Additionally, SRT technologies are not perfect and can introduce signi”cant
noise and bias during data acquisition. Our experiments with non-rigid transformations and rotations presented in
Supplemental Methods B.3 and C.5 are representative of such realistic misalignment scenarios.

C.2 Dataset statistics
Supplemental Table S1 contains detailed statistics regarding the data used for benchmarking. #e rows indicated as
(in-Xenium-panel) are the statistics for Visium dataset when restricted to paired Xenium panel.

Datasets Component No. of Spots Panel Size Total Counts Count/Gene Count/Spot

BRCA Xenium 167,780 313 32,102,956 102,565 191
Visium 4,992 (WT) 115,297,808 6,375 23,096

(in-Xenium-panel) 4,992 307 4,123,612 13,431 826
scRNA-seq 30,365 (WT) 204,904,784 11,331 6,748

CRC Xenium 340,837 422 42,073,224 99,699 123
Visium 4,269 (WT) 404,804,672 22,383 94,824

(in-Xenium-panel) 4,269 408 18,012,420 44,148 4,219
scRNA-seq 41,993 (WT) 149,924,208 8,291 3,575

Table S1: Dataset statistics. (in-Xenium-panel) denotes Visium dataset subse$ed to matching Xenium gene panel.
WT stands for whole-transcriptomic (18 thousand genes).

5https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
6https://www.10xgenomics.com/products/visium-hd-spatial-gene-expression/dataset-human-crc

5

https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/visium-hd-spatial-gene-expression/dataset-human-crc

C.3 Hyperparameters of SIID
SIID contains a number of hyperparameters. Most of these parameters are chosen based on common sense and a
small-scale parameter search.

• Number of latent factors 𝑈 determines the size of 𝑃 and 𝑄 of the factorization, and is loosely based on how
many cell types the datasets have. In simulation, 𝑈 is set to match the data generation process, and in real data,
it is set to 20 or 40 for BRCA and CRC respectively. #is is the only dataset-speci”c parameter we employ.

• We described platform scaling technique in Implementation, parameter inference and imputing missing genes
as a way to model platform-speci”c count modeling between Xenium and Visium datasets. #is is disabled for
simulation both in dataset generation and inference, and is enabled when running with real data.

• SIID uses entropy regularization (Implementation, parameter inference and imputing missing genes) to pro-
mote assigning Xenium cells to smaller number of latent factors. With ”xed total of 5,000 training epochs
and regularization weight exp(𝑖/𝑑) where 𝑗epoch is the epoch number, higher 𝑑 means weaker regularization
strength. We use 𝑑 = 1000 for real data imputation (Imputing missing genes in cancer SRT data), and 𝑑 = 500
elsewhere.

• SIID has the (exibility of using genes inside and outside the targeted panel during inference. For our runs, we
choose to not use Visium genes outside Xenium panel (except those in holdout set for imputation).

• SIID is runwith 3 restarts, and the runwith lowest total loss is used for prediction. It also uses a 𝑘2 regularization
over rawmodel parameters (Implementation, parameter inference and imputing missing genes), whose weight
is set to 10≃5 for all runs. #e model is optimized with Adam optimizer with learning rate of 0.05.

We also benchmark performance of SIID under di!erent hyperparameter choices. Speci”cally, for both BRCA and
CRC datasets, we test combinations of the following parameter values:

• Number of latent factors 𝑈 is chosen from (5, 10, 20, 30, 40, 50).

• #e entropy regularization strength 𝑑 is chosen from (300, 500, 1000, 1500, 2000) for both datasets. #e number
of training epochs are ”xed at 5000.

• #e number of random restarts being 1 or 3.

We present the results for these control experiments in Supplemental Methods D.1.

C.4 Setup for benchmarking imputation
We select the methods to benchmark by the top performers in (Li et al. 2022), excluding SpaOTsc (Cang and Nie 2020)
as it requires a pairwise distance matrix over Xenium data with over 100K cells, and excluding SpaGE (Abdelaal et al.
2020) as it operates over log-normalized datawhilewe benchmark imputationwith raw counts. We additionally select
SLAT (Xia et al. 2023) and SANTO (Li et al. 2024) as representatives of SRT-alignment-based imputation methods.

• Tangram (Biancalani et al. 2021) is run with Visium dataset as the single-cell data, and the Xenium dataset as
the spatial data with default parameter and 1000 training epoches. We also run Tangram in two con”gurations,
once in default mode (cell mode), and once in cluster mode with cluster labels generated by running Leiden
clustering (Traag et al. 2019) in scanpy package (Wolf et al. 2018) with default parameters. Tangram with
scRNA-seq pairing is run in the same way, except that we downsample the scRNA-seq dataset for CRC by 2↔
when Tangram is run in cell mode. #is is so it could ”nish in a reasonable amount of time.

• gimVI (Lopez et al. 2019) is run in default parameters with the same number of latent factors as SIID, and
optimized for 200 epochs. As advised by authors, We also remove empty cell or spots before optimization.
However, we could not ”nish optimization due to model parameters becoming NaN frequently in the middle
of the optimization a’er a large number of a$empts and trying over many di!erent con”gurations.

• SLAT (Xia et al. 2023) is run with parameters recommended for Xenium-Visium pairing (120 neighbors for
building kNN graph for Xenium, 5 neighbors for building kNN graph for Visium). For each Xenium cell (even
outside of Visium-Xenium overlap area), SLAT matches it to a Visium spot. Imputation of a holdout gene is
performed by copying the expression of such holdout gene on matched Visium spot to the Xenium cells.

6

• SANTO (Li et al. 2024) proposes an imputation strategy from two aligned SRT slices based on Poisson regres-
sion, which we re-implement and benchmark. For each holdout gene 𝑙, we train a Poisson regression model of
form %𝑊𝑚𝑋 ↗ Pois(𝑂𝑄𝑊𝑛); here, 𝑜 denotes the set of Xenium cell that maps to a Visium spot (in the intersecting
area of Visium and Xenium slices), 𝑂𝑄𝑊 and %𝑊 denote 𝑂𝑄 and % subseted to 𝑜 respectively, 𝑚𝑋 denotes the Vi-
sium expression for the holdout gene, and 𝑛 ↓ ℝ |𝑂𝐿 | is the combination coe&cients for imputing the holdout
gene. We use the alignment as described in Setup and evaluation, and identical mapping % as used in SIID. We
impute the expression for all Xenium cells (inside or outside 𝑜) a’er training and evaluate correlation on all
cells.

• For Baseline A, the estimated expression for a Xenium gene 𝑙 is given by %𝑚𝑋, where𝑚𝑋 refer to the expression
of gene 𝑙 in Visium. Intuitively, the Visium spot expression is copied to each Xenium cell mapped to that
spot through %. Xenium cells that are not mapped to a Visium spot (as the datasets are partially aligned) are
assigned zero expression.

• For Baseline B, let 𝑝𝑄 = 𝑂𝑄! |𝑂𝐿 | be the observed total count per Xenium cell. If a Xenium cell 𝑌 is mapped to
Visium spot 𝑍 , we let𝑞[𝑌] = 𝑌𝐿 [𝑍]∑

𝑁 :%[𝑁,𝑂]=1𝑌𝐿 [𝑎] be the weight of cell 𝑌 among all cells mapped to the same spot. #e
estimate for a Xenium gene 𝑙 is then given by computing the estimate for Baseline A, then scale by 𝑞[𝑌] for
each cell 𝑌 . Intuitively, this means the counts in Visium spot 𝑍 is distributed among Xenium cells mapped to
that spot proportional to observed Xenium counts.

• For Baseline C, from the outputs of Baseline A, we apply a kNN smoothing where the expression of each
Xenium cell is calculated as the average of its 120 nearest neighbors. We then follow the partition-scaling
steps as described in Baseline B.

• For Baseline D, from the outputs of Baseline A, we ”rst perform the partition-scaling as done in Baseline B,
then apply kNN smoothing as described above.

C.5 Evaluating the e!ect of noise in spatial mapping
We follow the identical setup as in Supplemental Methods B.3 to evaluate the e!ect of changing % in imputation
performance. See Supplemental Figure S2C and Supplemental Figure S2D for their e!ect on imputing real datasets.

We also evaluated the consequences of distortion of the mapping matrix % on both datasets. For this test, we run
SIID with identical hyperparameters, but rotate the Visium slice clockwise around its centroid from 10 to 90 degrees
in increments of 10. Larger rotation means most Xenium cells are mapped to more distant Visium spots. We observe
that SIID’s performance decreases as the angle of rotation increases, but that overall performance does not degrade
substantially (Supplemental Figure S6).

C.6 Consolidated runtime information for imputation runs
SIID are benchmarked on a single Tesla P100 GPU with 12GB memory, and most other methods (if CPU-Bound) are
run on a cluster with 20 Xeon E5-2690 CPUs. SIID is run ”ve times per fold with 3 restarts each and the reported
values in Table 1 and Supplemental Table S2 are averaged across 5 runs. Average runtime for the benchmarked
methods for each fold in seconds can be found in Supplemental Table S2, including Visium pairing and scRNA-seq
pairing. Without the 2↔ downsamping in CRC scRNA-seq dataset, Tangram cannot ”nish within 2 days or 172,800
seconds. For Tangram in cluster mode, we do not include the time taken for running Leiden clusters.

Tangram (Visium) Tangram (scRNA-seq)

Dataset SIID (3 runs) cell mode cluster mode SLAT SANTO cell mode cluster mode

BRCA 403s 8,632s < 300s < 300s 4,020s 43,309s < 300s
CRC 965s 17,232s < 300s 429s 12,814s 65,240s < 300s

Table S2: Comparison of average run time in seconds per fold for the benchmarked methods.

7

We note that Tangram in cell mode for BRCA and CRC datasets takes 2.5 and 5 hours to complete (Supplemental
Table S2), in part because running the Tangrammodel on GPUs requires a large amount of GPUmemory to store the
full |𝑇𝑄 |↔|𝑇𝑅 | entries of the mapping matrix𝑊 . In contrast, SIID stores only 𝑈(|𝑇𝑄 |+|𝑆𝑅 |) ⇐ 𝑈 |𝑇𝑄 | (since |𝑇𝑄 |⇒ |𝑆𝑅 |)
parameters for 𝑃 and 𝑄 , around 100↔ fewer than Tangram for our benchmarking datasets.

To further evaluate scalability of SIID, we benchmark the time and peak GPU memory for varying sizes of input
and latent space. Since most work is done on the GPU, CPU memory is not a constraint for SIID. Speci”cally, we ran
SIID on the BRCA dataset in the following se$ings:

• Se$ing 𝑈, the number of latent factors to 20, 40, 60, 80 and 100.

• Se$ing the number |𝑆𝑅 | of Visium genes in inference to 400, 800, 1200, 1600, 2000.

• More Xenium cells: Wemake between 1 and 5 copies of the Xenium cells. #e copies have their spatial location
shi’ed by 𝑅 (0, 10) in both dimensions and gene count randomized by a Poisson distribution.

• More Visium spots (roughly corresponding to higher grid resolution): Similar to the above experiment, but
location shi’s are 5 times larger.

As shown in Supplemental Figure S5, SIID takes up to 20% more time and GPU memory with up to 5↔ of latent
factors, more genes, or larger Visium dataset. However, the resource usage scales roughly linearly as the size of
the Xenium dataset. #is is consistent with our proposed theory that the size of the Xenium dataset |𝑇𝑄 | |𝑆𝑄 | is the
dominating factor in evaluating the time and memory usage of SIID.

C.7 SIID identi”es cell subtypes in stromal population from BRCA
We start with the paired single-cell RNA-seq dataset (Supplemental Figure S13A) and perform an unsupervised
clustering followed by delineating marker genes for each unsupervised cluster (Supplemental Figure S13B). We note
that many of these di!erentially expressed genes are not present in the Xenium pre-de”ned panel (marked in red)
which in turn makes it impossible to delineate cell subtypes of this compartment. To select the set of candidate
genes for imputation, we followed the standard procedure implemented in the scanpy (Wolf et al. 2018) package.
Speci”cally, we identi”ed highly variable genes by calculating gene-wise statistics and then selecting those that met
the criteria of having a mean expression between 0.0125 and 3, and a dispersion (variability) greater than 0.5. #is
procedure produces 3,000 highly variable genes out of around 18,000. We next run SIID to impute the expression
of these genes from the companion Visium dataset. #e stromal cells (Supplemental Figure S13C) in the imputed
Xenium dataset is further sub clustered into four subgroups (Supplemental Figure S13D).

We further analyzed the spatial co-localization of the Stromal and T-cell hybrid cell type with stromal cell sub
types annotated by SIID in BRCAXenium data. A’er overlaying the Stromal–T cell hybrid spots with stromal subtypes
on the Xenium spatial map (Supplemental Figure S14), we observed that these cell types share spatial neighborhoods.
To quantify this, we computed the spatial co-occurrence between Stromal-T cell hybrid cells and Stromal subtypes
using Squidpy’s squidpy.gr.co_occurrence7(Supplemental Figure S14B). Across various inter-spot distances, all
stromal subtypes—except adipocyte-rich stroma—showed comparable co-occurrence pro”les. In the imputed Xe-
nium data, we further examined genes from the immune–stromal niche signature and found them expressed in the
Stroma–T cell hybrid cluster as well (Supplemental Figure S14C), suggesting that spots from both cell types share an
overlapping gene-expression program.

C.8 SIID with Negative Binomial Counts
Modeling. Inspired by gimVI (Lopez et al. 2019), we implement an alternativemodel wherewe assume that Xenium
counts follow a Poisson distribution, while Visium counts follow a negative binomial distribution. #e negative
binomial mean 𝑂𝑅 = 𝑊𝑆𝑃𝑄 is the same as in the count-scaled reparameterization described in A shared cell type
model between paired SRTs. #e overdispersion 𝑟𝑅 is gene-speci”c but consistent between spots. Formally, the loss
function is

PoiLoss(𝑂𝑄 ; diag(𝑅)𝑃𝑄𝑄) + NegBinomLoss(𝑂𝑅 ;𝑊𝑆𝑃𝑄, 1 |𝑁𝑀 |𝑟
𝑆
𝑅)

7https://squidpy.readthedocs.io/en/stable/api/squidpy.gr.co occurrence.html

8

https://squidpy.readthedocs.io/en/stable/api/squidpy.gr.co_occurrence.html

Here, 𝑟𝑅 ↓ ℝ
|𝑂𝑀 |

+ is the overdispersion for each gene, and the matrix 1 |𝑁𝑀 |𝑟𝑆𝑅 indicates that all spots for the same
gene share the same overdispersion parameter. For a given spot-gene pair, with observed count 𝑉 , inferred mean𝑠
and inferred verdispersion 𝑟 , the loss function (negative log-likelihood) is de”ned as:

NegBinomLoss(𝑉 | 𝑠,𝑟) = NegBinomNLL(𝑉 | 𝑡, 𝑢)
= ≃ ln !(𝑉 + 𝑢) + ln !(𝑢) + ln(𝑉 !) ≃ 𝑢 ln(𝑡) ≃ 𝑉 ln(1 ≃ 𝑡)
= ≃ ln !(𝑉 + 1/𝑟) + ln !(1/𝑟) + ln(𝑉 !) + ln(1 + 𝑟𝑠)/𝑟 + 𝑉 ln(1 + 1/𝑟𝑠)

where 𝑢 = 1/𝑟 and 𝑡 = 1/(1 + 𝑟𝑠) are the parameters of the negative binomial in its natural parameterization, and !
is the Gamma function that extends factorial to complex numbers.

Implementation. We implement this version of SIID, optimizing 𝑟𝑅 alongside other parameters such as 𝑃,𝑄 and
𝑊 . Since overdispersion cannot be negative, we similarly perform gradient descent on log𝑟𝑅 instead.

Evaluation. We evaluate this version of SIID on two real datasets in the identical setup as described in Imputing
missing genes in cancer SRT data. We obtain similar performance on BRCA dataset (average gene-wise 𝐿2 of 0.2498,
compared to 0.2527 of original version) and slightly worse on CRC dataset (average gene-wise 𝐿2 of 0.2013, compared
to 0.2248 of the original version). Evaluation on other metrics can be found in Supplemental Table S6 under the
column “NegBinom”.

D Additional Results

D.1 Reporting 𝐿2 scores with di!erent hyperparameters
As outline in the second half of Supplemental Methods C.4, we benchmark SIID on two real datasets with varying
hyperparameters. #e ”nal con”guration used elsewhere is highlighted in bold.

Entropy Regularization Strength

Latent Factors Restarts 𝑑 = 300 𝑑 = 500 𝑑 = 1000 𝑑 = 1500 𝑑 = 2000

𝑈 = 5 – 0.1663 0.1739 0.1850 0.1835 0.1824
3 0.1668 0.1706 0.1897 0.1875 0.1879

𝑈 = 10 – 0.1821 0.2075 0.2313 0.2298 0.2298
3 0.1911 0.2068 0.2309 0.2317 0.2298

𝑈 = 20 – 0.1484 0.1689 0.2477 0.2503 0.2490
3 0.1454 0.1546 0.2527 0.2536 0.2551

𝑈 = 30 – 0.1145 0.1312 0.2530 0.2495 0.2469
3 0.1210 0.1243 0.2604 0.2568 0.2529

𝑈 = 40 – 0.1001 0.1241 0.2386 0.2412 0.2393
3 0.1002 0.1236 0.2457 0.2439 0.2401

𝑈 = 50 – 0.0902 0.1178 0.2269 0.2250 0.2246
3 0.0928 0.1179 0.2329 0.2376 0.2308

Table S3: Mean holdout 𝐿2 scores for SIID on the BRCA dataset with varying parameters.

9

D.1 Reporting 𝐿2 scores with di!erent hyperparameters 10

Entropy Regularization Strength

Latent Factors Restarts 𝑑 = 300 𝑑 = 500 𝑑 = 1000 𝑑 = 1500 𝑑 = 2000

𝑈 = 5 – 0.1401 0.1423 0.1513 0.1513 0.1504
3 0.1423 0.1444 0.1522 0.1529 0.1542

𝑈 = 10 – 0.1575 0.1620 0.1786 0.1774 0.1776
3 0.1602 0.1649 0.1792 0.1795 0.1792

𝑈 = 20 – 0.1674 0.1770 0.2116 0.2125 0.2119
3 0.1678 0.1775 0.2125 0.2143 0.2129

𝑈 = 30 – 0.1655 0.1753 0.2207 0.2198 0.2210
3 0.1680 0.1804 0.2224 0.2225 0.2227

𝑈 = 40 – 0.1541 0.1700 0.2209 0.2206 0.2227
3 0.1576 0.1713 0.2248 0.2229 0.2255

𝑈 = 50 – 0.1353 0.1479 0.2188 0.2168 0.2188
3 0.1359 0.1515 0.2217 0.2221 0.2228

Table S4: Mean holdout 𝐿2 scores for SIID on the CRC dataset with varying parameters.

D.2 Reporting other correlation measures
We selected 𝐿2 as our primary metric due to its use in previous studies on gene imputation (Biancalani et al. 2021).
Additionally, we note that the values imputed by SIID (or Tangram) are not integer counts, making count-based
correlationmeasures not directly applicable either. To strengthen the conclusions of themanuscript, in Supplemental
Table S5, we further evaluate SIID by four other metrics as suggested and detailed in a recent benchmarking paper (Li
et al. 2022) – Pearson cross correlation (PCC), structural similarity index measure (SSIM), root mean square error
(RMSE), and Jensen-Shannon (JS) divergence. As shown in Supplemental Table S5, SIID has the best performance
by all listed measures.

Tangram

Metric Dataset SIID cell mode cluster mode SLAT SANTO

𝐿2
⇑ BRCA 0.2527 0.1874 0.1557 0.0688 0.1042

CRC 0.2248 0.1789 0.1382 0.0608 0.0727

PCC ⇑ BRCA 0.4470 0.3789 0.3402 0.2015 0.2620
CRC 0.4099 0.3644 0.2995 0.1997 0.2236

SSIM ⇑ BRCA 0.3456 0.3112 0.1904 0.1192 0.2239
CRC 0.4191 0.3905 0.2761 0.1017 0.3437

RMSE ⇓ BRCA 1.0261 1.0952 1.1317 1.2542 1.2027
CRC 1.0609 1.1089 1.1658 1.2596 1.2399

JS ⇓ BRCA 7.1959 8.3165 8.3599 12.4704 8.9354
CRC 8.2665 9.1641 9.2956 12.4493 9.8258

Table S5: Comparison of selected methods for imputing Xenium gene expression from paired Visium data using
di!erent metrics. #e arrow following the metric name indicates whether higher is be$er (⇑) or lower is be$er (⇓).
Bold indicates best performance in each metric and dataset pair.

With results from Tangram paired with scRNA-seq as well as SIID with Negative Binomial counts, SIID with
Poisson counts model has the best performance in all but one measure where it’s second best.

11

D.2 Reporting other correlation measures 12

SIID Tangram (Visium) Tangram (scRNA-seq)

Metric Dataset Poisson NegBinom cell cluster SLAT SANTO cell cluster

𝐿2
⇑ BRCA 0.2527 0.2498 0.1874 0.1557 0.0688 0.1042 0.2194 0.2203

CRC 0.2248 0.2013 0.1789 0.1382 0.0608 0.0727 0.1960 0.1823

PCC ⇑ BRCA 0.4470 0.4431 0.3789 0.3402 0.2015 0.2620 0.4126 0.4176
CRC 0.4099 0.3786 0.3644 0.2995 0.1997 0.2236 0.3794 0.3700

SSIM ⇑ BRCA 0.3456 0.3429 0.3112 0.1904 0.1192 0.2239 0.4930 0.2994
CRC 0.4191 0.3953 0.3905 0.2761 0.1017 0.3437 0.5786 0.3494

RMSE ⇓ BRCA 1.0261 1.0296 1.0952 1.1317 1.2542 1.2027 1.0609 1.0575
CRC 1.0609 1.0900 1.1089 1.1658 1.2596 1.2399 1.0926 1.1038

JS ⇓ BRCA 7.1959 7.2051 8.3165 8.3599 12.4704 8.9354 7.8144 7.8562
CRC 8.2665 8.4766 9.1641 9.2956 12.4493 9.8258 8.8543 8.8650

Table S6: Similar to Supplemental Table S5, with scRNA-seq pairing results from Tangram and SIID with Negative
Binomial counts (Supplemental Methods C.8) also reported. #e arrow following the metric name indicates whether
higher is be$er (⇑) or lower is be$er (⇓). Bold indicates best performance in each metric and dataset pair.

	Proof of the Reparameterization Lemma
	Benchmarking on simulated Xenium and Visium data
	Steps for generating simulated Xenium and Visium data
	Benchmarking deconvolution results
	Evaluating the effect of spatial mapping matrix in SIID
	Execution time and memory usage
	Evaluation of spatially variable coverage
	Evaluation of platform scaling factor

	Detailed benchmarking information for real data
	Downloading and preprocessing datasets
	Dataset statistics
	Hyperparameters of SIID
	Setup for benchmarking imputation
	Evaluating the effect of noise in spatial mapping
	Consolidated runtime information for imputation runs
	SIID identifies cell subtypes in stromal population from BRCA
	SIID with Negative Binomial Counts

	Additional Results
	Reporting R^2 scores with different hyperparameters
	Reporting other correlation measures

