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Figure S1: (A) 𝐿2 score for each gene’s expression between predicted values (from SIID and Tangram ) and ground
truth across di!erent simulation se”ings. (B) Jensen-Shannon (JS) divergence of predicted cell type mixture propor-
tions compared to the ground truth for SIID, STdeconvolve and SpiceMix .
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Figure S2: Evaluating model performance in the presence of perturbed #. (A) 𝐿2 score of imputed holdout genes
across di!erent level of noise in simulated scenarios. Each point indicate a gene. (B) JS divergence across Visium
spots across di!erent level of noise in simulated scenarios. Each point indicate a Visium spot in simulation. (C)
Average 𝐿2 score of imputed holdout genes across di!erent level of noise in BRCA holdout experiments. (D) Same as
panel C over the CRC dataset.
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Figure S3: Evaluating the e!ect of spatially varying coverage in simulation. (A) Visualization of spatially varying
coverage in simulated Xenium data. (B) Comparing 𝐿2 scores of SIID and Tangram on simulated data with spatially
varying coverage vs constant coverage.
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Figure S4: Evaluating the e!ect of non-rigid transformation. (A) Sinusoidal grid distortion and subsequent rotation
on the Visium coordinates to create warped coordinates. (B) Row-wise correlation coe$cient with cell type pro%le
matrix 𝑀 , Xenium spot to cell type assignment 𝑁𝐿 , and Visium spot to cell type assignment matrix 𝑁𝑀 .

Figure S5: Time (le& axis, blue) and peak GPU memory (right axis, red) used for SIID in varying con%gurations,
based on a real run over the BRCA dataset. From le& to right, the number of latent factors, number of total genes, size
of Visium dataset and size of Xenium dataset are scaled up to 5 times.
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Figure S6: Evaluating model performance in the presence of misalignment # in real data. (A) 𝐿2 score of imputed
holdout genes across di!erent degree of rotation in the BRCA dataset. (B) Same as panel A over the CRC dataset.
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Figure S7: Computational performance comparison of SIID and Tangram across di!erent simulation con%gurations.
(A) Execution time (in seconds) for SIID (blue) and Tangram (orange) across varying numbers of clusters (4,8,16),
grid sizes (10, 20), and coverage levels (0.25, 0.5, 1, 2). (B) Memory usage in megabytes for SIID (blue) and Tangram
(orange) under the same simulation se”ing.
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Figure S8: (A) Per-gene 𝐿2 score plot for CRC dataset. (B) For Visium deconvolution, cosine similarity between
inferred cluster proportions from our method (columns) and RCTD inferred cell type proportions (rows). Note that
unlabeled cells are discarded when running RCTD.
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Figure S9: 𝐿2 score di!erential for each individual gene in both (A) BRCA dataset and (B) CRC dataset. X-axis represents
total UMI counts for each gene in Visium plo”ed on a log scale. Red do”ed line represents 𝑂 = 0 meaning equal 𝐿2

score, dots above the line denote SIID achieving higher 𝐿2 compared to Tangram for that gene.
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Figure S10: SIID recovers sparsity of Xenium gene expression in (A) BRCA dataset and (B) CRC dataset. X-axis repre-
sents observed sparsity of each gene in the Xenium dataset. Y-axis represents predicted sparsity of each gene in the
holdout experiment given 𝑁 (𝑃 = 0 | 𝑃 → Pois(𝑄 )) = 𝑅↑𝐿 for each observation. Bo”om right indicates Pearson and
Spearman correlation of sparsity prediction.
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Figure S11: (A) Histogram of platform scaling factor for shared genes from BRCA. (B) ’e 𝐿2 score for imputed
expression on holdout genes in simulated data with platform speci%c scaling from SIID and Tangram .
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Figure S12: Le&: Observed Xenium expression (ground truth for evaluating imputation) Middle: SIID prediction
when the gene is held out, Right: Tangram prediction for (A) FGL2, (B) LPL, (C) VWF, and (D) MRC1 genes when
they are held out. We also present the 𝐿2 scores between predicted expression and observed expression in the title.
We normalize the total counts within each gene to 1, 000, 000 and plot all normalized counts on the same color scale.
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Figure S13: (A) A UMAP visualization of annotated cell types in the BRCA scRNA-seq dataset, with box indicating
stromal cell population. (B) Mean and dispersion of the genes in scRNA-seq data with the 100 most variable genes
for the stromal cell type highlighted in blue (present in Xenium panel) or red (not present in Xenium panel).
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Figure S14: (A) Spatial co-localization of Immune-Stromal niche with Stromal and T cell hybrid in BRCA Xenium data.
(B) Spatial co-occurrence score of stromal cell sub-types with Stromal and T-cell hybrid. (C)Marker gene expression
for annotated cell subtypes with Stromal and T-cell hybrid.
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Figure S15: (A) Gene set scores for iCAF, myCAF, Immune, and Adipocyte in each of stromal cell subtypes. (B) ’e
average expression of genes from the gene sets in each of the corresponding cell subtypes. (C)AUMAP embedding of
the annotated stromal cell subtypes fromXenium a&er imputation by SIID BRCAXenium data. (D) Spatial distribution
of the four stromal cell subtypes from SIID imputed Xenium data.
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Figure S16: Simulation using 𝑆 = 100 with 𝑇 = 8 cell types. (A) Simulated Xenium and Visium data where each
location is colored with the cell type color. (B) Comparison boxplots of 𝐿2 scores between SIID (blue) and Tan-
gram (brown) on hold out genes at all coverage levels. Statistical signi%cance is indicated by asterisks where ****
denotes p-value of 𝑈 < 0.0001.
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