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1 Proof of equivalence to harmonic number

Equation 2 stated this relationship between our recursive formula for E[Sn] and the harmonic number.

Simple Random Model: E[Sn] = 1 +
1

n

n→1∑

j=0

E[Sj ]

Harmonic Series Sum: Hn =
n∑

i=1

1

i

We now show that these are equivalent using induction.

Proof. Base case: Letting n = 1 for both equations:

E[S1] = 1 +
1

1
(0) = 1

H1 =
1

1
= 1↭

Induction step: We now assume E[Sn] = Hn and show that E[Sn+1] = Hn+1.

E[Sn] = 1 +
1

n

n→1∑

j=0

E[Sj ]

E[Sn+1] = 1 +
1

n+ 1

n∑

j=0

E[Sj ]

Now we rewrite E[Sn+1] in terms of E[Sn]:

E[Sn+1] = 1 +
1

n+ 1

n∑

j=0

E[Sj ]

=



1 +
1

n
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n+ 1
→

n

n+ 1
+ 1 +

1

n+ 1
E[Sn]

=
n

n+ 1
E[Sn] +

1

n+ 1
E[Sn]→

n

n+ 1
+ 1

= E[Sn] +
→n+ n+ 1

n+ 1

= E[Sn] +
1

n+ 1

Now apply the assumption of Sn = Hn.
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E[Sn+1] = E[Sn] +
1

n+ 1

=
n∑

i=1

1

i
+

1

n+ 1

=
n+1∑

i=1

1

i

E[Sn+1] = Hn+1 ↭

2 Proof of membership in !(log d)

In the main manuscript, we proved the expectation of our recurrence sum for a simple random model is
equivalent to the harmonic series sum (E[Sn] = Hn). Next, we want to show that Hn ↑ !(log n) in order to
prove the average space complexity for the cli”-compressed document array profiles.

Proof. Using Stolz–Cesàro’s rule (L’Hôpital’s rule for sequences), we can show that Hn ↑ !(log n) by proving
that as n ↓ ↔ the limit of the ratio of the functions is equivalent to a constant. If so, that means we can
identify constants c1, c2 such that c1 log n ↗ Hn ↗ c2 log n thereby proving that Hn ↑ !(log n).

lim
n↑↓

Hn

log n
= lim

n↑↓

Hn+1 →Hn

log(n+ 1)→ log(n)
= lim

n↑↓

1/(n+ 1)

log(1 + 1/n)

= lim
n↑↓

1

log(1 + 1/n)n + log(1 + 1/n)1
= lim

n↑↓

1

log e+ log(1 + 1/n)1

Here, we know that as n approaches ↔ the expression log(1 + 1/n) will approach log(1) which is equivalent
to 0.

= lim
n↑↓

1

log e+ 0
= lim

n↑↓

1

1
= 1

Therefore, we have shown that Hn ↑ !(log n), and based o” of the result from the previous section (1), we
have also shown that E[Sn] ↑ !(log n)

3 Running Kraken 2 and Braken

Here are command used to build both the Kraken 2 and Bracken indexes for the SILVA database.

kraken2-build --db silva --special silva --threads 1
bracken-build -d silva -t 1 -l 250 -k 35

Here are the commands used to run the Kraken 2 query followed by using Bracken to do genus abundance
estimation.

kraken2 --db silva
--threads 1
--report output.kreport2
--paired mate_1.fastq mate_1.fastq
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> output.kraken2
bracken -d silva

-r 250
-l G
-i output.kreport2
-o output.bracken

4 MicrobeMixer: Simulating realistic 16S rRNA reads

The code to use MicrobeMixer can be found at https://github.com/oma219/MicrobeMixer. There are
two main steps; the first step is to summarize public data to identify the top 100 genera for a particular
biome and the second step is to simulate reads for that biome using art illumina [Huang et al., 2012].

Here is an example of how to run MicrobeMixer to generate an abundance file that contains the top 100
genera found in human gut.

python3 sim_16s_reads.py stats
--biome root:Host-associated:Human:Digestive system
--taxonomy ../data/tax_slv_ssu_138.1.txt
--output abundance.tsv

The previous code generates a file called abundance.tsv. Next we will use that file to generate simulate
reads from those genera.

python3 sim_16s_reads.py simulate
--biome-abundance abundance.tsv
--silva-ref ../data/SILVA_138.1_SSURef_NR99_tax_silva.fasta
--silva-taxonomy ../data/tax_slv_ssu_138.1.txt
--primers ../data/V3_V4_primers.txt
--temp-dir <OUTPUT_DIR>

This command will generate two FASTQ files and file called seqtax.txt that contains the mapping for
each genus id (1 to 100) to the taxonomic path for that genus. Here is the command that MicrobeMixer
uses to simulate reads using art illumina.

art_illumina -ss MSv1 -amp -p -na -i genus_{genus_num}_seqs.fna -l 250
-f {coverage} -o genus_{genus_num}_reads_

Additionally, the primers used by MicrobeMixer to extract the hypervariable regions are list below which
were same ones used by Almeida et al [Almeida et al., 2018]:

V1-V2 F: AGMGTTYGATYMTGGCTCAG V4-V4 F: GTGCCAGCMGCCGCGGTAA
V1-V2 R: GCTGCCTCCCGTAGGAGT V4-V4 R: GACTACHVGGGTATCTAATCC
V3-V4 F: CCTACGGGNGGCWGCAG V4-V5 F: GTGCCAGCMGCCGCGGTAA
V3-V4 R: GACTACHVGGGTATCTAATCC V4-V5 R: CCCGTCAATTCMTTTRAGT
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5 Read-level classification results for additional datasets

Figures S1 and S2 show the read-level classification on the Human Gut and Soil datasets.
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Figure S1: Read-level classification accuracy across taxonomic levels on Human Gut datasets. Read-level
classification results across di”erent levels of taxonomy on the Human Gut datasets corresponding to four
di”erent hypervariable regions. Each dataset consisted of 10 million 250-bp paired-end Illumina reads.
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Figure S2: Read-level classification accuracy across taxonomic levels on Soil datasets. Read-level clas-
sification results across di”erent levels of taxonomy on the Soil datasets corresponding to four di”erent
hypervariable regions. Each dataset consisted of 10 million 250-bp paired-end Illumina reads.
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6 Genera abundance results for additional datasets

Figures S3 and S4 show the genera abundance estimation and Bray-Curtis distances on the Human Gut and
Soil datasets.
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Figure S3: Genera abundance estimation for the Human Gut microbiome datasets. Genera abundance
estimation for the 100 genera present in each of the simulated datasets for the Human Gut microbiome. The
grey bar present in the Cli”y and Kraken 2 bars present the percentage of reads classified to genera not
present in the true set. Each bar is annotated with the Bray-Curtis distance to the true distribution (lower
means closer).
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Figure S4: Genera abundance estimation for the Soil microbiome datasets. Genera abundance estimation
for the 100 genera present in each of the simulated datasets for the Soil microbiome. The grey bar present
in the Cli”y and Kraken 2 bars present the percentage of reads classified to genera not present in the true
set. Each bar is annotated with the Bray-Curtis distance to the true distribution (lower means closer).
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7 Read-level classification results when varying k for Kraken 2

Figures S5, S6, S7 show Kraken 2’s accuracy as we vary the length of the minimizer parameter used for
classification.
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Figure S5: Read-level classification accuracy on the Human Gut dataset with varying k-mer sizes in Kraken 2.
Read-level classification results across di”erent levels of taxonomy on the Human-Gut dataset corresponding
to four di”erent hypervariable regions. Each dataset consisted of 10 million 250-bp paired-end Illumina
reads. We tested out Kraken 2 using k-mer values of k = 31 (default), 27, 23 to see it would improve the
accuracy, but instead we saw a downtrend as k got smaller.
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Figure S6: Read-level classification accuracy on the Aquatic dataset with varying k-mer sizes in Kraken 2.
Read-level classification results across di”erent levels of taxonomy on the Aquatic dataset corresponding to
four di”erent hypervariable regions. Each dataset consisted of 10 million 250-bp paired-end Illumina reads.
We tested out Kraken 2 using k-mer values of k = 31 (default), 27, 23 to see it would improve the accuracy,
but instead we saw a downtrend as k got smaller.
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Figure S7: Read-level classification accuracy on the Soil dataset with varying k-mer sizes in Kraken 2.
Read-level classification results across di”erent levels of taxonomy on the Soil dataset corresponding to four
di”erent hypervariable regions. Each dataset consisted of 10 million 250-bp paired-end Illumina reads. We
tested out Kraken 2 using k-mer values of k = 31 (default), 27, 23 to see it would improve the accuracy, but
instead we saw a downtrend as k got smaller.
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8 Index scaling on whole-genome databases from GTDB

In order to test the scaling of Cli”y to larger input datasets, we decided to build indexes over subtrees of
increasing size from the GTDB [Parks et al., 2020] metagenomic database. Table S1 shows the nine di”erent
input datasets that we constructed Cli”y indexes for where each index is represented by a root node.

Index #: Taxonomic Rank: Name: # of Genomes/Documents: Reference Size (GB):

1 Species Salmonella 5 0.044

2 Species Escherichia 11 0.099

3 Species Citrobacter 18 0.170

4 Species Klebsiella 24 0.248

5 Species Enterobacter 49 0.441

6 Family Aeromonadaceae 72 0.526

7 Family Pasteurellaceae 198 0.798

8 Family Vibrionaceae 348 3.090

9 Family Alteromonadaceae 530 4.178

Table S1: Collections of whole genome sequences of increasing size selected from the GTDB (release
220) [Parks et al., 2020]. Each index represents a subtree of the GTDB taxonomy beginning at the species.
In this experiment, we utilized the representative genomes curated by GTDB [Parks et al., 2020].
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Figure S8 shows the temporary disk usage used by Cli”y during the index building step, as well as the
final size of the index. We observed that Cli”y’s temporary disk usage grows quickly as size of the index and
number of document grows which makes it di#cult currently to scale to whole-genome databases like GTDB.
Furthermore, even with the cli”-compressed document array profiles, the index size can grow quite large for
large reference sequences such as whole-genome databases. Future work will be needed to reduce the disk
usage during the build phase as well as additional ideas to further compress the data-structure for large-scale
inputs. Nevertheless, for smaller inputs such as 16S rRNA classification using the SILVA database, Cli”y
provides a reasonably sized index with improved classification accuracy.
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Figure S8: Cli”y index building statistics for GTDB whole-genome collections. Cli”y index building statistics
for the collections of whole genome sequences from GTDB [Parks et al., 2020] described in Table S1. (a)
Shows the temporary amount of disk space used during the index building phase, primarily used to store
the uncompressed document array profiles prior to applying cli” compression. (b) Shows the final Cli”y
index size for each of the whole-genome collections which contains the run-length encoded BWT and the
cli”-compressed document array profiles.
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