Supplementary Material for “Integer programming framework for

pangenome-based genome inference”

S1 Path Inference Problem is NP-hard

Proof for Theorem 1. We begin with an instance Gy (Vy, Ex) of the Hamiltonian Path Problem. Let

Vi ={u1,...,u,}. We first create a graph G’ = (V’, E’) where

Vi={stu{ul |1<k<n,1<i<n}uit}

E’:{(S,u,lc)|1§k‘§n} U {(u};,uﬁj‘lﬂ(uk,u;L)EEH,1§i<n} U {(up,t) |1 <k<n}

For 1 <z <n+2(c(n+1)+1), let bin(z) be standard binary encoding of 2 using b = [log,(n + 2(c(n +

1) +1))] + 1 bits. We assign the vertex labels

o(ul) =bin(k)o0®1 for1<i<n,1<k<n
o(s) =bin(n+1) 00’1 o bin(n+2) 00’10 --- o bin(n + c¢(n + 1) +1) 0 0°1

o(t) =bin(n+c(n+1)+1+1) 00T obin(n +c(n +1) +142) 0 0°1 o bin(n + 2(c(n + 1) + 1)) 0 0°1.

We create a distinct haplotype path for each edge that supports only that edge. We define the set of strings
S = {bin(1) 0 0°1,bin(2) 0 0°1,...,bin(n + 2(c(n + 1) + 1)) 0 0°1}. See Figure S1 in Appendix for a small
worked example. The reduction presented above clearly runs in polynomial time for ¢ = \V\@(l). Combined

with Lemmas 3 and 4, Theorem 1 follows.

Lemma 3. If Gy contains a Hamiltonian path, then G’ has an inferred path P with Cost(P) =c-(n+1).

Proof. Let u;,, ..., u;, be a Hamiltonian path in Gr. We take as our inferred path P = s, u}ﬂ ui, ce U
t. As every edge has its own corresponding haplotype, the number of recombinations is n 4+ 1. Furthermore,
since u;,, ..., 4;, is a Hamiltonian path and s and ¢ are included in the inferred path, all strings in S occur

in o(P). Hence, the total cost is ¢- (n + 1). O
Lemma 4. If G’ has an inferred path P with Cost(P) < c-(n+1), then Gy has a Hamiltonian path.

Proof. First, we claim that s and t must be included in . The 0°1 substrings are used as padding to prevent

any string in S from being matched using portions of two or more vertex labels. Therefore, if s or ¢ are not



included in the inferred path, at least ¢ - (n 4+ 1) + 1 strings from S do not occur in o(P), contradicting
that Cost(P) < ¢- (n+ 1). Hence, the inferred path P must contain s and ¢ and be of the form s, uj , ...,
uj , t for some iy, ..., in. Since each edge traversed corresponds to a recombination, the total number of
recombinations is n + 1. The only way the Cost(P) < ¢- (n + 1) is if all strings in S occur as substrings in
o(P). Again, due to the 0°1 padding in the vertex labels, this can only happen if for all i € [1,n], u¥ is a

vertex in P for some k. Furthermore, because there are n vertices in P that are not s or t, there must be

exactly one such k for a given ¢. We conclude that w;,,, ..., u;, is a Hamiltonian path in Gg. g
U2
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Fig.S1: A small example of our reduction from Hamiltonian Path Problem to Problem 1 (Theorem 1).
(Top) The starting instance of G of Hamiltonian Path Problem. (Bottom) The vertex labeled graph
G’ constructed from G. Here, n = 4 and we assume ¢ = 2, making b = [logy(n + 2(c(n + 1) +
1))] +1 = 6. Each edge is supported by a unique haplotype (not shown). The string set is S =
{0000010000001, 0000100000001, . .., 0110100000001}.



Table S1: Additional information about the MHC sequences of five haplotypes (APD, DBB, MANN, QBL,
SSTO). We show the length of the complete assembly in the second column. The third and forth columns
show edit distance statistics between the assembly and 49 reference haplotypes included in the pangenome
reference. In the last two columns, we list the SRA accession numbers and coverage of short-read sequencing
datasets.

Edit distance with Short-read data
pangenome reference haplotypes
Haplotype Asser?ﬁlgplf ngth Mean Minimum SRA Accession Coverage
APD 4.93 146,423 37,102 SRR17272303 16.26x
DBB 5.05 174,619 10,380 SRR17272302 12.91x
MANN 5.03 189,464 58,168 SRR17272301 18.20x
QBL 4.90 159,968 72,293 SRR17272300 12.85x
SSTO 5.05 161,044 35,583 SRR17272299 15.04x
Table S2: Commands used for running various tools
Haplotype/Genotype Imputation
PHI 1) vcf2gfa.py -v multi-allelic_phased.vcf -r reference
.fa > graph.gfa
2) PHI -t32 -g graph.gfa -r reads.fq -o imputed_hap.fa
PanGenie PanGenie -t32 -i reads.fq -r reference.fa -v multi-
allelic_phased.vcf -o out_vcf_PG
VG 1) kmc -t32 -k29 -m128 -okff -hp reads.fq sample
tmp_dir

2) vg haplotypes -t32 -v2 --num-haplotypes 1 -i input.
hapl -k sample.kff -g sample_graph.gbz input_graph.gbz
3) vg paths -x sample_graph.gbz -F -S recombination >

imputed_hap.fa

VCF Operations

Transform VCF to have vcfbub -1 0 -r 100000 -i input.vcf > output.vct
non-overlapping variants

Filter heterozygous bcftools view -i ’GT="hom"’ input.vcf.gz > output.vct
variants

Generate haplotype from bcftools consensus -f reference.fa -o imputed_hap.fa
reference genome and VCF input.vcf.gz
file

Evaluation

Edit distance edlib-aligner ground-truth_hap.fa imputed_hap.fa




Table S3: Count of homozygous and heterozygous genotype calls made by PanGenie. In our benchmark, we
excluded the heterozygous calls because the sequencing datasets were derived from homozygous cell lines.

Coverage APD DBB MANN QBL SSTO

Hom Het Hom Het Hom Het Hom Het Hom Het

0.1x 52,816 6,245 51,435 7,626 52,452 6,609 53,707 5,354 53,893 5,168

0.5x% 56,249 2,812 55,845 3,216 56,258 2,803 56,447 2,614 56,064 2,997

1x 57,448 1,613 57,010 2,051 57,064 1,997 57,224 1,837 57,099 1,962

2x 58,201 860 57,948 1,113 58,334 727 58,101 960 58,397 664

5x 58,552 509 58,382 679 58,601 460 58,340 721 58,228 833

10x 58,5633 528 58,478 583 58,188 873 58,343 718 58,337 724
Complete data 58,647 414 58,457 604 58,592 469 58,457 604 58,521 540




Table S4: We report additional performance statistics for PHI on all our datasets. We specify the number
of recombinations used in the solution in the second column. Next, we mention the runtime and memory
usage of PHI. In the fifth and the sixth columns, we specify edit distance and alignment identity between
the output MHC sequence and the ground-truth sequence. Alignment identify is defined as the ratio of the
number of character matches divided by the length of the alignment. In the last three columns, we give
statistics about the minimizers computed from sequencing reads. We give the count of distinct minimizers
observed in the read set. A fraction of minimizers would be absent from the graph, and some fraction would
be present in all reference haplotypes, making them ‘uninformative’. The matches of only the remaining
fraction minimizers are useful while solving the optimization problem.

Coverage Recombinations Time Memory Edit Alignment Minimizers Minimizers
(s) (GB) distance identity (%) (Reads) % Absent | % Uninformative

Haplotype: APD

0.1x 3 1840 72 7551 99.85 33248 36.33 | 43.12
0.5x 7 1294 84 2272 99.95 156209 37.90 | 41.42
1x 7 2338 93 2220 99.95 289795 41.46 | 39.19
2x 9 2702 108 1948 99.96 508720 46.47 | 35.84
5x% 10 4671 125 1779 99.96 984355 59.39 | 27.05
10x 10 3683 134 1810 99.96 1599325 72.22 1 18.33
16.26 x 10 4536 134 1810 99.96 2288126 80.17 | 13.00
Haplotype: DBB
0.1x 2 1604 70 2191 99.96 33901 37.28 | 41.78
0.5x 4 1467 83 1415 99.97 157510 39.66 | 39.60
1x 4 2022 92 1496 99.97 293996 42.54 | 37.84
2% 4 2502 108 1472 99.97 518085 47.59 | 34.28
5x 4 4175 126 1385 99.97 1015730 60.37 | 25.75
10x 4 4525 132 1377 99.97 1660305 72.79 | 17.55
12.91x 4 4743 135 1377 99.97 2028107 77.31 ] 14.58
Haplotype: MANN
0.1x 3 1680 67 41028 99.19 33614 34.31 | 43.07
0.5x 7 1658 85 38379 99.24 153933 36.66 | 41.50
1x 8 2183 94 37898 99.25 288713 39.33 | 39.76
2x 9 3054 109 37728 99.25 502336 44.89 | 36.22
5x 12 3774 126 36263 99.28 964364 57.71 | 27.55
10x 14 5426 132 35941 99.29 1553694 70.85 | 18.86
18.20x 14 4843 134 35940 99.29 2450244 81.06 | 12.15
Haplotype: QBL
0.1x 3 2222 88 15062 99.69 32464 35.13 | 43.05
0.5x 9 1236 81 7829 99.84 153818 37.47 | 41.77
1x 10 2388 92 4610 99.91 284587 39.92 | 40.35
2% 14 2981 109 3561 99.93 502087 46.98 | 36.14
5x 17 3986 123 3349 99.93 966151 58.80 | 27.40
10x 17 4049 129 3356 99.93 1566636 71.76 | 18.63
12.85x 17 4113 131 3343 99.93 1862566 75.90 | 15.84
Haplotype: SSTO
0.1x 2 2013 72 17626 99.65 33792 36.06 | 41.98
0.5% 12 1812 84 10471 99.79 156473 37.60 | 41.12
1x 20 2536 93 5150 99.90 291484 41.05 | 38.59
2x 24 2977 108 4671 99.91 513683 46.50 | 35.02
5x 24 5023 124 4611 99.91 992511 59.01 | 26.68
10x 24 5021 132 4634 99.91 1609715 71.88 | 18.16
15.04x 24 4499 137 4637 99.91 2206289 79.07 | 13.44
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Fig.S2: Evaluation of the performance of the IQP method with and without relaxation of the binary edge
variables x,,. We compared runtime using various short-read datasets.
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Fig. S3: Evaluation of the performance of the ILP method with and without relaxation of the binary edge
variables x,,. We compared runtime using various short-read datasets.



