667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

688

689

690

691

693

Supplementary Material

S1 OMKar Report

For ease of use, OMKar optionally compiles a report that includes 1) the observed chromosomal
segment lists with reconstructed karyotype, 2) a list of interpreted events using ISCN notation, 3)
a visualization of each corresponding chromosome with cytoband and event labels, and 4) a table
of important genes that are near the breakpoints of an event or have copy number (CN) alteration.
An html version of the report is prepared for easy viewing.

By default, OMKar outputs a molecular karyotype in a text format to unambiguously describe
the karyotype as follows: It first lists all defined segments across the reference genome. For each
segment, the following information is provided: segment number, chromosome, start and end coor-
dinates, and the graph nodes representing the segment. Each segment is represented by two nodes,
connected by a segment edge. All segments are forward-oriented (i.e., the end coordinate is greater
than or equal to the start coordinate) and are sorted by chromosome groups (from 1 to Y) and
increasing coordinates. The segments are non-overlapping, with no gaps between them, although
telomeric regions of the reference genome may be excluded.

Following the segment definitions, OMKar reports the reconstructed paths that represent a
karyotype. Each path consists of a list of segments in the format “Path number = segment number
followed by direction.” The segments are traversed either in the forward (‘+’) or reverse (‘-')
direction, where ‘+’ indicates traversal from the start to the end of the segment, and ‘-’ indicates
traversal from the end to the start of the segment. For example, “Pathl = 1+ 2+ 3-” means that
the path traverses segment 1 in the forward direction, segment 2 in the forward direction, and
segment 3 in the reverse direction. Additionally, the number of centromeres present in each path

is reported, which should ideally be one, indicating a valid chromosome structure.

S2 Terminal Event Simulation and Validation

We simulated a total of 117 terminal Structural Variations. During analyses, it was found that

only 50 of the 117 SVs (42.7%) were reconstructed under the 0.2 Mbp matching distance (same

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

71

712

713

714

715

716

77

718

719

720

distance used for non-terminal SVs; Supplementary Table S1). However, 78 of the 117 SVs (66.7%)
were reconstructed under the 5 Mbp matching distance. Because one of the endpoint was in the
terminal masking region, most terminal SV edge did not have an SV call. For unbalanced SVs,
OMKar reconstructed these variations using the information from CNV calls, which had much
greater error in the event boundaries. For inversion, as a balanced SV, missing the SV call meant
OMKar had no other information on the SV, thus, resulting in a much lower recall rate at all
distances. In addition, terminal events such as arm deletion may result in a false loss of centromere
call, which result in a relatively higher false positive chromosomal-loss aneuploidy reconstruction
from OMKar.

From the real data we received, we observed no terminal structural variation, hinting that ter-
minal SVs were far less frequent than our simulation. For future reference, OMKar may incorporate

additional information such as alignment contigs to improve the boundary accuracy and recall rates.

S3 OMKar details

S3.1 Filtering SV and CNYV calls

OMKar utilizes the CNV and SV calls from the Bionano pipeline. We applied several filters to
improve data quality. First, we filtered out low-confidence CNV calls, defined as those with a
confidence level of 0.95 or below, as well as those located in masked regions that could interfere
with the analysis. Next, we excluded CNVs smaller than 200 kbp. However, if an excluded CNV
was supported by a corresponding SV, it was retrieved during later processing, ensuring no relevant
variations were missed.

Following these steps, SV calls were filtered based on variation-specific confidence thresholds
established by BioNano pipeline: translocations (Tjqns = 0.05), inversions (Tj,, = 0.7), and indels
(Tinger = 0). Additionally, SV calls in masked regions were discarded. Breakpoints from SVs were
processed by sorting them based on chromosomal and genomic coordinates and merging adjacent
breakpoints within a 50 kbp window to simplify the breakpoint graph. To ensure accurate repre-
sentation, CNV segments were split if breakpoints occurred within their boundaries, guaranteeing

that all breakpoints exclusively connect the terminal coordinates of segments.

721 83.2 Converting to linear constraints

722 'To tackle the inherent non-linearity of the absolute value and sign functions within the optimization
723 problem, we introduce new variables and constraints to linearize these functions.
To convert the sign function into linear constraints, we employed the following approach: The

ILP formulation for s, = sgn(se) when s, > 0 is:

724 where s, is a binary variable. This formulation ensures that s, =1 when s, > 0 and s, = 0 when
725 S = 0, while maintaining linearity in the constraints. The constant 1000 is used as a sufficiently
726 large value to approximate an upper bound on s..

727 The absolute value function can be linearized y, = |z,| as follows:

728 where y, represents the absolute value of x,. These constraints ensure that y, is equal to |z,| by
729 considering both the positive and negative cases for x,. Since our objective is to minimize y,, it

730 mnaturally corresponds to |x,|. Thus:

Objective Function = Z(CU + Ty — Ty — Z Se) + Z By — Z eSgn(Se) + A Z 0

veV e€SV (v) veV 5.€SV veV
=72 (otan—ri= 3, st B =) s +A) o
veV eeSV (v) veV sc€SV veV

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

S3.3 Parameter determination

In determining a., we consider the characteristics of structural variation e. If e signifies a high-
confidence call and connects two distinct chromosomes, we set o, = 72 otherwise, a. = 9. A
higher value is given to intra-chromosomal translocations to prioritize their preservation in the

final karyotype. For the calculation of 3,, we introduce a penalty parameter that becomes more

pronounced as segments grow in length. To achieve this, we define 8, = 4 X [le;litl%%v)] This

parameter (3, ensures that the penalty for modifying longer segments is appropriately weighted.
The parameter v is empirically determined and set to a value of 5, while X is fixed at 1 to

ensure that if two candidate decompositions are nearly identical, our preference is to select the one

with fewer odd vertices. This empirical choice addresses the unique requirements of our approach,

providing a balanced framework for the optimization process (Supplementary Table S4).

S3.4 OMKar Eulerian Path algorithm

To reconstruct chromosomal structures from breakpoint graphs, OMKar computes an Eulerian
path, ensuring each edge is traversed exactly once while maintaining biologically meaningful con-
straints. It begins with a breakpoint graph, where vertices represent segment boundaries, and edges
denote segment continuity, reference adjacencies, or breakpoint rearrangements. To enforce chromo-
somal structure, the algorithm prioritizes reference edges (minimizing deviation from the reference
genome), followed by breakpoint edges (capturing structural variations), and lastly, segment edges.
Using a recursive depth-first traversal, it starts from a telomeric vertex—representing a natural chro-
mosomal endpoint—and evaluates edges with a validity function that prevents breaking segment

integrity or disconnecting essential graph components. The pseudo-code is given in Algorithm 1.

Algorithm 1: Find Eulerian Tour Starting from Vertex v in Graph G
Data: Graph G

Result: Eulerian Tour
Function ValidEdge (edge e(v,w), edge e(u,v)):

if deg(v)==1 then
L return True

else if e(v,w) or e(u,v) is segment edge then

if e(v,w) is not bridge edge then
L return True

L return False
Function FindEulerianTour (current vertex v, previous vertexr u):
5o Add v to the Eulerian tour list F;

Initialize an empty list W;
for each edge e(v,w) do

if ValidEdge (e(v,w),e(u,v)) then
| Add w to the valid edges list W

Sort W based on the edge types (E,., Fy, Es);
Pop w from list W;

remove e(v,w) from G

| FindEulerianTour (vertex w, vertex v)

Initialize an empty list E;

FindEulerianTour (Telomeric vertex v , -1);

7w S3.5 OMKar Report: Event Interpretation

754 After segregating the chromosomes, OMKar interprets the structural variations in each chromoso-

755 mal cluster using ISCN notation(Hastings et al., 2024) as follows:

756 1. For each reconstructed chromosome in the chromosomal cluster, its chromosomal identity is
757 assigned based on the highest represented centromere, and if it is acentric, by the overall
758 highest-represented chromosome in the remaining segments.

759 2. In a pre-processing step, the Wild Type (WT) chromosome corresponding to the reconstructed

760 chromosome is segmented prior to alignment, using the segments in the reconstruction.
761 3. Next, OMKar performs an alignment between each reconstructed chromosome and the cor-
762 responding Wild Type (WT) using an alignment that maximizes the longest common subse-

763

764

765

766

767

768

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

787

789

790

791

quence, with a linear penalty for indels.

4. After alignment, blocks of aligned segments are separated into three types: 1) concordant
block represents matching between the reconstruction and the WT, 2) insertion block rep-
resents segments inserted in the reconstruction, and 3) deletion block represents segments
deleted in the reconstruction. Adjacent blocks of the same type, and representing contiguous
genomic coordinates are merged to minimize the total number of blocks.

5. The final interpretation assigns a representative SV name (using ISCN nomenclature) to each
insertion or deletion block, reporting a potential cause of the deviation from the WT. Each
SV has its unique signature in the combination of block types (Supplementary Table S5). For
example, an inversion is always an insertion block of inverted segments next to a deletion block
of non-inverted segments. In this example, it is more likely that a single inversion resulted
in both the deletion and the insertion, instead of two separate events (inverted insertion
and deletion). Similarly during the interpretation step, a compound SV is preferred over a

sequence of simpler SVs (preference is given to reducing the total number of events).

To minimize the number of events, event types are resolved from the most complex to the least,
using the following preference order: (1) inter-chromosomal balanced translocation and transposi-
tion; (2) intra-chromosomal balanced translocation and transposition; (3) other intra-chromosomal
variations. Finally, if any deletions or insertions remain unaccounted for, they are marked as simple
deletions or duplicated-insertions. During each variation type’s resolution, each un-resolved block
is iterated over, with the goal of being associated with the signature of that variation type. Bal-
anced translocations attempt to associate anywhere in the cluster or chromosome, for inter- and
intrachromosomal search, respectively. All other variations associate adjacent blocks.

For balanced translocations, the following step is performed after all insertion and deletion
blocks are resolved. All balanced translocations are initially denoted as transposition, associating a
deletion block and a non-adjacent insertion block of an overlapping set of segments, with allowance
for small indels. When transpositions form a cycle, they are interpreted as balanced translocations.
This is implemented recursively, by jumping between each associated deletion-insertion pair, and
then looking for nearby transposition blocks of the opposite type. When exhausted, if a cycle

is formed, an n-break balanced translocation is interpreted, and otherwise, all transpositions are

792

794

795

796

797

798

799

800

801

803

804

805

806

807

808

809

810

811

812

813

814

815

817

818

interpreted as individual transpositions.

When associating between different blocks, a procedure called “seed-matching” is applied. For
each block that is currently being resolved, it searches for an associated block, such that the common
subsequence between the blocks (in indivisible-unit of each segment) is sufficiently long (10 kbp by
default). The sizes of the flanking segments not matched may be limited by an “indel allowance”.
For example, an insertion block of (B—, A—) next to a concordant block of (B + C+) will be
interpreted as a left-duplication-inversion only if A— is less than 50 kbp. On the other hand, the
size of C'+ is irrelevant for associating a duplication-inversion, as it is not between the two blocks.

These allowances are determined empirically (Supplementary Section S4).

S3.6 OMKar Report: Visualization

The visualization is achieved by intersecting the coordinates in the observed chromosomal segment
list with a given cytoband coordinate table. Each band pattern is then stacked and displayed using
Matplotlib (v3.7.5). In an alternative plot, the bands are segregated by the segment boundaries in
the OMKar output, instead of the cytoband. The event label is then applied to the corresponding
segment location on the band stack.

By default, the table of important genes comes from genes that have CN alteration or within
20 kbp of an event’s breakpoint. This list of genes are further filtered to only include those in
the Developmental Disorders panel in the Gene2Phenotype database (DDG2P)(Thormann et al.,

2019).

S4 Analyses of Event Distances

The resolution of OGM was determined by the matching distances between the Truth SV edge and
the reconstructed SV edge, using KarCheck. Observations from this analyses were used to estimate
the sensitivity of OMKar event interpretation (Supplementary Table S5).

When applying KarCheck between the simulated and the reconstructed karyotypes, history logs
from KarSim’s output was used to label SV edges on K;. This step marks each SV edge with its
causal rearrangement. During KarCheck matching, the distance between a pair of matched edges

were recorded with the causal SV type. This distance is further separated as the two distances of

819

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

the endpoint.

Then, the matched edge from K; was searched in OGM’s SMAP output (contains all SV calls),
with a proximity of 50 kbp, equal to the SV call merging distance of OMKar. From Fig. S7, we
observed duplication inversions tend to have much larger distances than all remaining structural
variations simulated. Most of the non-duplication-inversion were reconstructed with less than 5
kbp distance from the truth, much lower than the average gene size of 10-15 kbp. Thus, if an SV
contains or interrupts a gene, OGM and OMKar are likely to reconstruct the correct boundary to
perform genotype-to-phenotype inference. Additionally, for all distances greater than 50 kbp, the
true SV edge was not captured with a high proximity in the SMAP, therefore, OMKar either had

to reconstruct based on a distant SV call or had to infer the missing SV call based on CNV call.

S5 KarSim

S5.1 KarSim module for simulating karyotypes

The KarSim module outputs a molecular karyotype file, a corresponding FASTA file, and a history
log with event segments and edges noted are outputted for downstream usage. The molecular
karyotype and history log can be used for KarCheck comparison, while the FASTA file can be used
as input for simulating the sequencing technology of choice, given that many of such simulators
are already available. KarSim is publicly available at https://github.com/MolecularKaryotype/
KarSimulator.

Three steps are taken in order, with step 2 being optional:

1. A template karyotype is created given the counts of autosomes and sex chromosomes.
2. (Optional) a series of SVs are applied to the karyotype

3. The FASTA formatted sequence of the rearranged chromosomes is generated.

All intermediate files in steps 1 and 2 are molecular karyotypes, which can be read-in for multiple
parallel edits or outputting the FASTA file.

There are two methods to introduce additional SVs to a karyotype: 1) manual addition of SVs
given the variation type and exact boundaries, and 2) using a parameter JSON file that contains

the number of SVs, each SV type’s likelihood, max/min size for each SV type, terminal occurrence

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

likelihood etc. Both processes can be applied multiple times and in an interleaved fashion. The
types of SVs supported can be found in Supplementary Table S6. In addition, the user has the
option to include a masking file such that SVs are not generated within proximity to any of these
regions. Another parameter can be passed in to prevent events that result in the formation of
segments smaller than a certain size, useful for sequencing technologies which have a resolution

limit.

S5.2 Implementation

KarSim is implemented using Python (version 3.9). A flowchart of the algorithm is in Supplemen-
tary Fig. S8A. Each chromosome in a karyotype is represented as a sequence of oriented segment
objects of the hg38 genome, denoted by the chromosome, start index, and end index. To simulate
an SV, left and right breakpoints are first introduced to the chromosome, breaking up the chromo-
some into segments. This results in each SV breakpoint being on the exact border of a segment.
Then, the corresponding rearrangement is applied to the segments to simulate the intended SV.
For the parameterized-random SV selection, SVs are selected one at a time, for the number of

SVs indicated on the parameter file as follows:

1. The SV type is randomly selectedbased on its likelihood.

2. The event size is selected from a uniform distribution between the maximum and minimum
size indicated for the SV type.

3. The left breakpoint of the event location is selected uniformly among all chromosomes.

4. The right breakpoint is calculated based on the size of the event selected earlier. For a
balanced reciprocal translocation, it is selected similar to the left breakpoint.

5. The breakpoints are applied to partition the segments, and if a masked region file or a smallest
segment allowance is applied, the resulting breakpoints and segments are checked for legality.

If the result is illegal under the parameters, steps three through five are recomputed.

S5.3 Generation and Processing of Simulated OGM Data

The FASTA files generated by the KarSim module were processed by OMSim(Miclotte et al., 2017)

to simulate a BNX file containing OGM molecules with added noise. Parameters for the enzyme,

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

OGM generation, and noise were sourced from publicly available repositories(RaeisiDehkordi, 2024).
The Bionano Solve pipeline (v3.7)(BionanoGenomics, 2018) was then used to compute CNVs, SV
calls, and contig alignments, and these outputs were used as input for OMKar to reconstruct the
final virtual karyotype.

When simulating structural variations, we used the masking files provided in Bionano Solve v3.7
(also included in repository (RaeisiDehkordi, 2024)). The masking file is on reference hg38, with
size of 423.1 Mbp (13.65%), including 128.1 Mbp (4.13%) in centromeres and telomeres, and 64.5
Mbp (2.15%) in acrocentric chromosomes’ p-arm. None of the SVs was simulated with breakpoint

boundary within 200 kbp of any masking region. Events were simulated with size 50 kbp to 2 Mbp.

S6 KarCheck

KarCheck is designed to be a symmetric comparator between two unphased karyotypes, denoted
by K, and Ky, by comparing their SV and CNV calls. In addition, to accommodate molecular
techniques that do not have a nucleotide-level resolution, KarCheck has an adjustable tolerance for
small breakpoint mis-matching for an SV that is present in both karyotypes. KarCheck is publicly

available at https://github.com/MolecularKaryotype/KarComparator.

S6.1 KarCheck Preprocessing

Preprocessing is first applied to K; and K, to partition chromosome groups into chromosome
clusters. Two chromosome groups are linked into the same cluster when there exists a breakpoint
connecting them (signaling an inter-chromosomal SV). A maximal connected component of linked
chromosome groups is denoted as a chromosome cluster.

Recall that we define each karyotype as an ordered list of segments. To make the two karyotypes
comparable, we further partition their segments such that the two karyotypes share an identical
set of segments (Supplementary Fig. S8B). To achieve this, all left /right endpoints of segments are
collected, and if a segment has an endpoint internal to it, it is split into two, ensuring the left /right

endpoint are on the boundaries (Supplementary Fig. S8B).

10

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

S6.2 SV similarity computation.

After pre-processing, the SVs between the two karyotypes are compared as a directed-multi-graph,
which offers ease of checking the orientation of each SV edge (Supplementary Fig. S8C). On this
graph, nodes represent either the start or the end of a segment (denoted as s and t), with the
addition of a source node (S) and a sink node (7') for transition at the start and end of each
chromosome. Edges represent the presence of a transition between two segments. For example, a
chromosome of [k+, [-], where the WT is [k+, [+], will be represented by edges (S, ks),(ks, l¢), and
(Is,T).

Since the two karyotypes share the same set of segments, they also share the same set of
nodes. Therefore, the comparison between the two sets of edges on this graph is equivalent to the
comparison of the two sets of SVs. To allow tolerance in breakpoint matching, we define a linear
distance function. Denote two non-segment edges as (a, b, 0) and (¢, d, 0’), where o (and o') describe

orientation. Define distance D((a,b,0), (¢, d,0’)) as:

00 Chr(a) # Chr(c) or Chr(b) # Chr(d)

D((a,b,0),(c,d,0)) =} oo 0# o

|pos(a) — pos(c)| + |pos(b) — pos(d)| otherwise

Prior to distance computation, identical edges between the two graphs are pruned. Second, if
a transition is s-to-t or t-to-s and is between two segments from the same chromosome with a
small distance (< 5 kbp), it is pruned. This is justified by that these transitions represent small
indels without change in orientation, which are not responsible if the technique has a minimum
resolution threshold. Finally, minimum weight bipartite matching is performed for the remaining
transition edges between the two karyotypes, with a maximum allowed matching distance 200 kbp.
Matching pairs are pruned, because they are considered similar SV edges. The matching distances
are recorded for downstream analyses upon resolution. Finally, all residual non-segment edges are
the differential SV edges between the two karyotypes. We use K, to denote the reconstructed
chromosome, and K; as the WT or true chromosome. Therefore, residual edges in K; represent

false negatives, and residual edges in K, represent false positives.

11

922

924

925

926

927

928

929

930

931

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

SV Similarity Metrics. The similarity of each individual SV edge is compared via the count
of K; edges after the two initial pruning procedures, and the residual edges in K; and K, after
final matching. TP = |inital edge| — |K; residual|, FN = | K} residual|, and FP = |K, residual|. A
Jaccard Similarity is computed for each cluster of compared simulated data to penalize both false
positive and false negative events. For comparison against real data, only the recall is computed
for each cluster, as the cytogenetic methods employed for the reference calls do not necessarily have

small enough resolution or ability to catch de-novo balanced events.

S6.3 Copy Number similarity comparison and metrics

CN comparison is done by binning the whole genome (excluding prefix/suffix masked region) into
spanning, non-intersecting bins of 50 kbp +/- 100 bp (exact size chosen to maximize the size of
the last bin on the chromosome). Each bin is used to store the average CN within that region,
separately for the K; and the K.

Then, for each cluster, the chromosome groups are determined by the union of all the chromo-
somal origins of the segments in the cluster. Each cluster’s CN bins are the subset of the total CN
bins, to only include the chromosome groups within the cluster. A WT expected count is deter-
mined to each chromosome group by rounding the average bin CN from K; (diploid for autosomes
and XX or XY for sex chromosomes).

The values of the CN bins’ of K; and K, are computed with CNs from all corresponding
segments. If a bin has a gain or loss of more than 0.05 CN from the WT expected count, it is a
marked as “CN gain” or “CN loss”. Otherwise, it is marked as “CN neutral”. This forms a paired
CNV array where the Jaccard Similarity can be computed. The denominator of the similarity is
the count of bins marked as CN gain or loss in either K; or K,, and the numerator is the count of

bins where K; and K, agree on CN gain or loss.

S6.4 Addtional Functionalities for Downstream Analyses

Edges on both K; and K, can be labeled with additional input. For example, Table 2 was computed
where each edge in K; from the simulation was labeled with the Structural Variation event type,
S0 a summary statistics was generated from the residual edge count of each event type.

When matching transition edges, the distances between the matched edges can be collected for

12

950

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

968

analysis. This can be further categorized by having K;’s transition edge labeled with the causal
event type. A detailed analysis on OMKar’s reconstructions’ distances against the simulation can

be found in Supplementary Section S4.

S6.5 Usage in validating real data reconstructions with previous cytogenetic

records

A function was implemented in KarCheck to allow efficient input of a karyotype for the purpose
of validating a reconstruction against previous cytogenetic records on that karyotype. For each
karyotype, its aneuploidy (if any), each event’s induced SV-breakpoints, and CN changes are taken
as input for the validation. This information is sufficient to populate a full molecular karyotype,
while KarCheck assumes the rest of the genome is WT.

For real data with cytogenetic records, the cytogenetic records were used as the “truth” karyp-
type (K}) and compared against the reconstruction (K,). CN gains called with microarray do not
specify the structural breakpoints of the amplification. For these, we first assumed each amplifica-
tion was a tandem duplication, and if the matching failed, we manually verified if the reconstruction
contained the amplification as a segmental duplication. Additionally, previous cytogenetic tech-
niques using microarray and staining did not fully capture every event on the genome, so the K;
was treated as incomplete, with potentially missed TP events. Therefore, for our final statistics of
the comparison, we only computed the recall to verify if OMKar reconstruction included all the

previously identified TPs.

13

