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Clustering performance of LLOKI-FP

To assess the quality of embeddings generated by LLOKI-FP, we compared them to embeddings pro-
duced by directly passing the gene expression matrix through scGPT, which serves as our baseline. We
applied Leiden clustering to the embeddings generated by each method to produce clusters for metric
evaluation. To ensure the number of clusters matched the ground truth, we performed an interval search
to determine the resolution parameter that yielded the exact number of clusters as the ground truth. Ta-
ble S1 shows the clustering performance using ARI and NMI scores. As shown, LLOKI-FP consistently
outperforms the baseline across all datasets and metrics, demonstrating the effectiveness of our approach.

Hyperparameter choice for LLOKI-FP and LLOKI-CAE

Here we provide additional details on training LLOKI-FP and LLOKI-CAE, including hyperparameter
selection and optimizations for training efficiency and performance.

For LLOKI-FP, we constructed k-NN graphs using k = 40 neighbors. As detailed in the Methods
section, we employed the optimal transport stopping criterion to determine the number of feature prop-
agation iterations. For the feature diffusion step, we empirically determined α = 0.05 (self-weight =
0.95) as the optimal value for updating gene expression, and used only a single graph iteration.

LLOKI-CAE’s loss function includes three distinct terms, each weighted by a corresponding param-
eter. The best results were obtained using λrec = 1, λbc = 500, and λtrip = 2.

During early training, positive-anchor pairs selected for triplet loss may be suboptimal. To address
this, we introduced a warm-up parameter w for the triplet weight. For the first w iterations, the triplet
weight λ′

trip is scaled as follows:

λ′
trip := min

(
λtrip, λtrip ×

i− w + 1

t

)
where t is the total number of training iterations and i is the current iteration. We used w = 10 for
the warm-up parameter. Additionally, triplets were computed after each iteration to ensure continual
improvement in the selection of possible triplets.

For the biological conservation loss, we use k = 30 neighbors, limited to cells from the same tech-
nology. This reduces the neighbor search space and reflects the observation that early in the training,
meaningful neighbors are unlikely to come from other technologies.

For the triplet loss, mutual nearest neighbors (MNNs) between each pair of technologies were iden-
tified using k = 40. All MNNs were retained as anchor-positive pairs, and negative samples were drawn
randomly from the same technology as the anchor. For the LLOKI run shown in Fig. 2, we utilized the
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optional cell type refinement described in the Methods section. Specifically, rather than using all MNNs,
positive pairs were formed by randomly selecting cells from any batch that share the same cell type as
the anchor. For negative sampling, instead of random selection, we chose the closest cell from the same
batch that belonged to a different cell type. This hard negative sampling strategy improved embedding
space differentiation by focusing on the most challenging cases for discrimination.

To manage GPU memory and enable frequent backpropagation, we implemented fixed mini-
batching. Batches were computed once at the beginning of training and held constant throughout. This
simplification reduces computational overhead and ensures that all neighborhood and triplet computa-
tions remain within-batch. We found that a batch size of 16,000 cells provided the best results.

Since the biological conservation loss and triplet loss functions operate on different numerical ranges,
the values of λbc and λtrip were selected to balance their contributions. For new datasets we recommend
starting with the default values and, if needed, performing a coarse grid search over λtrip ∈ {1, 2, 4}
while keeping λbc fixed. To further enhance cell-type separability, λbc may be increased. This allows
users to adjust the trade-off between biological conservation and batch mixing based on their analysis
goals.

Creating a high-level cell type annotation

A key challenge when integrating ST datasets is the variation in available annotations. This variabil-
ity complicates direct comparisons and the visualization of batch integration performance. To address
this, we created a unified set of high-level cell type annotations for use in UMAP visualizations, while
retaining the original annotations for evaluation using biological conservation metrics.

To generate this unified annotation, we aggregated the original cell type labels from four datasets
(MERSCOPE, MERFISH, STARmap, and CosMx). We mapped these labels into eight broader cate-
gories that perserve key biological distinctions. These high-level annotations, along with the original
cell types they encompass, are detailed in Table S3.

The Xenium dataset did not include cell type annotations but provided cluster identities. To annotate
Xenium clusters, we used marker gene expression and spatial localization. Where marker genes were
unavailable – for example, for astrocytes – we matched the spatial distribution of Xenium clusters to the
known spatial patterns of annotated cell types in other datasets. This heuristic spatial mapping allowed
us to assign high-level annotations even in the absence of canonical markers.
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B Supplementary Tables

scGPT LLOKI-FP LLOKI-FP – OT

Dataset ARI NMI ARI NMI ARI NMI

MERSCOPE 0.541 0.740 0.727 0.830 0.606 0.793
MERFISH 0.605 0.795 0.892 0.893 0.893 0.903
STARmap 0.197 0.364 0.423 0.609 0.351 0.560
CosMx 0.347 0.555 0.395 0.599 0.370 0.607
Xenium 0.451 0.620 0.522 0.709 0.542 0.718

Table S1: Ablation study on cell-type clustering metrics (Adjusted Rand Index, ARI, and Normalized Mutual In-
formation, NMI) comparing LLOKI-FP with scGPT and LLOKI-FP without the optimal transport alignment (–OT ).
Since optimal transport is a key component of LLOKI-FP, removing it enables us to evaluate its specific con-
tribution to clustering performance. Results are shown for five spatial transcriptomics datasets: MERSCOPE,
MERFISH, STARmap, CosMx, and Xenium. Higher ARI and NMI values indicate better clustering performance.

Dataset ST sparsity scRNA-seq sparsity

MERSCOPE 0.697 0.853
MERFISH 0.883 0.889
STARmap 0.907 0.875
CosMx 0.610 0.541
Xenium 0.678 0.792

Table S2: Sparsity comparison between five spatial transcriptomics datasets – MERSCOPE, MERFISH,
STARmap, CosMx, and Xenium – and the scRNA-seq reference, subset to the gene panel for each ST dataset.
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High-Level Annotation Corresponding Entries
Astrocytes Astrocytes_Cortex_Hippocampus,

Astrocytes_Thalamus_Hypothalamus,
Astrocytes,
Astro-NT,
Astro-TE,
Astroependymal

Ependymal cells Ependymal cells,
Tanycytes,
Choroid_plexus_epithelial_cells,
Ependymal_cells,
Tanycyte,
Ependymal,
CHOR

Excitatory neurons CNU-HYa Glut,
CNU-MGE GABA,
Excitatory_neurons_Hippocampal_CA1,
Excitatory_neurons_Hippocampal_CA2,
Excitatory_neurons_Hippocampal_CA3,
Excitatory_neurons_Layer1_Piriform,
Excitatory_neurons_Layer2_3,
Excitatory_neurons_Layer4,
Excitatory_neurons_Layer5,
Excitatory_neurons_Layer5_6,
Excitatory_neurons_Layer6,
Excitatory_neurons_Telencephalon,
Peptidergic_neurons,
Excitatory_neurons_Amygdala,
Excitatory_neurons_Di/mesencephalon,
Cholinergic_neurons_Habenebula,
HY Glut,
HY Gnrh1 Glut,
HY MM Glut,
IT-ET Glut,
MB Glut,
MH-LH Glut,
MY Glut,
NP-CT-L6b Glut,
OB-CR Glut,
P Glut,
Telencephalon projecting excitatory neurons,
Di- and mesencephalon excitatory neurons,
TH Glut

Inhibitory neurons Cck_interneurons,
CNU-HYa GABA,
CNU-LGE GABA,
CNU-MGE GABA,
CTX-CGE GABA,
CTX-MGE GABA,
Di- and mesencephalon inhibitory neurons,
D1_medium_spiny_neurons,
D2_medium_spiny_neurons,
HY GABA,
Inhibitory_interneurons,
Inhibitory_neurons_Amygdala,
Inhibitory_neurons_Habenula_Hypothalamus,
Inhibitory_neurons_Habenula_Thalamus,
Inhibitory_neurons_Reticular_nucleus,
Interneurons,
MB GABA,
MY GABA,
OB-IMN GABA,
Olfactory inhibitory neurons,
Peptidergic neurons,
Serotonergic_neurons,
Telencephalon_inhibitory_neurons,
Telencephalon inhibitory interneurons,
Telencephalon projecting inhibitory neurons

Microglia Immune,
Microglia

Oligodendrocytes Commited_oligodendrocytes,
Mature_oligodendrocytes,
Oligodendrocyte precursor cells,
Myelin_forming_oligodendrocytes,
Newly_formed_oligodendrocytes,
Oligodendrocytes,
Oligodendrocytes_precursor_cells,
OPC-Oligo

Other/Unannotated Neuroblasts,
Unannotated

Vascular cells Choroid plexus epithelial cells,
Vascular,
Vascular and leptomeningeal cells,
Vascular endothelial cells,
Vascular_endothelial_cells,
Vascular_leptomeningeal_cells,
Vascular_smooth_muscle_cells,
Vascular smooth muscle cells,
Perivascular_macrophages,
Pericytes

Table S3: Unified high-level cell type annotations derived, mapped from the four spatial transcriptomics tech-
nologies with available cell type annotations: MERFISH, MERSCOPE, STARmap, and CosMx.
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Dataset Strain Sex Age

MERFISH C57BL/6NCrl (Charles River) Female 56–62 weeks
MERSCOPE C57BL/6J Male 53–71 days
STARmap C57BL/6 (Charles River) Female 8–10 weeks
CosMx C57BL/6J Male 18 months
Xenium C57BL/6 Unknown Unknown

Table S4: Summary of mouse metadata for brain slices used across spatial transcriptomics technologies. To
account for potential biological variability, we report the strain, sex, and age of mice used in each dataset, as
specified by dataset sources.
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C Supplementary Figures

No BC lossNo triplet lossNo AE lossNo LLOKI-FP
A

B

No cell types
Cell type

Technology

Astrocytes
Ependymal cells
Excitatory neurons
Inhibitory neurons
Microglia
Oligodendrocytes
Vascular cells

STARmap
MERFISH
MERSCOPE
Xenium
CosMx

No cell types

Normal

No LLOKI-FP

No AE loss

No triplet loss

No BC loss

Method Isolated
labels

Silhouette
label

Bio conservation Batch correction Aggregate score

Silhouette
batch

Graph
connectivity

PCR
comparison

Batch
correction

Bio
conservationcLISIKMeans

NMI
KMeans

ARI

Figure S1: Ablation study of LLOKI performance when removing components of the three part loss function
of LLOKI-CAE or LLOKI-FP. (A) UMAP visualizations for each ablation, with cells colored by cell type (top)
and by technology (bottom). Variants include LLOKI-CAE with the biological conservation loss, triplet loss, or
reconstruction loss removed. One variant additionally uses cell-type based sampling to define positive pairs
for triplet loss. LLOKI-FP is also ablated by directly passing raw gene expression through scGPT without
LLOKI-FP. (B) Performance comparison of the five ablations using eight metrics, assessing biological variation
preservation and batch mixing across technologies.
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Figure S2: In situ expression patterns of the 15 metagenes identified by SPICEMIX+ LLOKI across four spatial
transcriptomics technologies: MERFISH, MERSCOPE, Xenium, and CosMx. Each row corresponds to one of
the 15 metagenes (m0-m14), and each column displays its spatial expression pattern within a given technology.
Darker colors indicate higher expression levels.
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Figure S3: In situ expression patterns of the 15 metagenes identified by SPICEMIX on the shared gene set
(22 genes) across four spatial transcriptomics technologies: MERFISH, MERSCOPE, Xenium, and CosMx.
Each row corresponds to one of the 15 metagenes (m0-m14), and each column displays its spatial expression
pattern within a given technology. Darker colors indicate higher expression levels.
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Figure S4: In situ expression patterns of the 15 metagenes identified by independent SPICEMIX runs performed
separately on each spatial transcriptomics technology: MERFISH, MERSCOPE, Xenium, and CosMx. Each
row corresponds to one of the 15 metagenes (m0–m14), and each column displays its spatial expression pattern
of that metagene in the respective technology. Darker colors indicate higher expression levels.
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Figure S5: UMAP visualization of T cells using shared genes and individual dataset runs. (A) UMAP of T
cells using the shared gene set across all five datasets, colored by dataset (left) or by the proportion of the 100
nearest spatial neighbors that are malignant (right). (B) UMAP of T cells using the full gene panel measured
for each dataset individually, colored by the proportion of the 100 nearest spatial neighbors that are malignant.
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