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Figure S1. Expression and functional analysis of the m3C writers in various tissues and pancreatic cancer. (A) 
qRT-PCR analysis of relative METTL2B, METTL6, and METTL8 expression in AsPC-1 cells after siRNA-
mediated knockdown (KD) with two independent siRNAs (#1 and #2). n = 3; Student’s t-test (*: p < 0.05). (B) 
The viability of AsPC-1 cells transfected with siRNAs targeting METTL2B, METTL6, or METTL8, assessed by 
CellTiter-Glo assays. n = 3; Student’s t-test. n.s.: not significant.  
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Figure S2. METTL2A-mediated m3C sites are enriched in the CC motif of poly(A) RNA. (A) Counts per million 
(CPM) values for METTL2A measured by nanopore direct RNA sequencing for each condition are shown. (B) 
Percentage of sites with increased current intensity and other parameter variations. (C) Logo plot of k-mer 
sequences enriched at the sites where signal alterations were consistently detected with both siRNAs. (D) 
Percentage of k-mer sequences with consecutive C bases in the middle position. (E, F) Cumulative percentage of 
the C (E) and CC (F) content in RNAs with and without sites of increased current intensity. Statistical significance 
was determined by Wilcoxon test. (G) Logo plot of sequences surrounding the sites with increased current 
intensity on METTL2A knockdown. (H) Distribution of current intensity at the indicated position in RPLP0-226, 
where increases were commonly detected with both siRNAs. The gray area represents the control condition, while 
the green and purple lines indicate METTL2A knockdown conditions. (I) Cumulative percentage of current 
intensity for each sample at the indicated site. (J) Nucleotide composition analysis of sites with increased intensity, 
categorized by different p-value cut-offs. Top chart shows the number of sites, while bottom chart shows the 
percentage of middle base composition. (K) K-mer composition of sites with increased intensity, showing the 
percentage of “CC” or “CC” k-mers (red), k-mers containing “C” (light red), and other k-mers (gray) across 
different p-value cut-offs. (L) WebLogo sequence logos for sites with increased intensity at different p-value cut-
offs. (M) MEME motif analysis for sites with increased current intensity at different p-value cut-offs. No other 
statistically significant motifs were detected beyond the CC motif. 
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Figure S3. Poly(A) tail lengths of mitochondrial transcripts. (A) Boxplots showing the distribution of poly(A) 
tail lengths for individual mitochondrial transcripts across all samples. 
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Figure S4. Subcellular localization of METTL2A in AsPC-1 cells. (A) Immunofluorescence analysis of AsPC-1 
cells transfected with FLAG or FLAG-METTL2A. Cells were stained with anti-FLAG antibody (green), 
MitoBright Red (magenta) for mitochondria, and DAPI (blue) for nuclei. Merged images and individual channels 
are shown. Scale bars: 5 μm. (B) Enlarged images of the boxed regions in (A), showing higher magnification of 
FLAG- and FLAG-METTL2A-expressing cells. Co-localization sites of FLAG-METTL2A with mitochondria are 
indicated by arrows. (C) Line-scan analysis of fluorescence intensity across the indicated line in FLAG-expressing 
cells shown in (A). The intensity profiles of FLAG (green), MitoBright Red (magenta), and DAPI (blue) are 
plotted. (D) Line-scan analysis of fluorescence intensity across the indicated line (A–B) in FLAG-METTL2A-
expressing cells shown in (A). The intensity profiles of FLAG (green), MitoBright Red (magenta), and DAPI 
(blue) are plotted. (E) Subcellular fractionation and immunoblot analysis of AsPC-1 cells expressing FLAG or 
FLAG-METTL2A. Whole-cell lysate (W), and cytoplasmic (C) and nuclear (N) fractions were analyzed by 
immunoblotting with antibodies against FLAG, GAPDH (cytoplasmic marker), and Lamin A/C (nuclear marker).  
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Figure S5. Selective detection of m3C sites in highly expressed RNAs. (A) Cumulative percentage of RNA 
length, the mean number of mapped reads, C content, and CC content in m3C RNAs versus other RNAs. Statistical 
significance was determined by Wilcoxon test. (B) Correlation between the minimum number of mapped reads 
per RNA and the fraction of C sites that are m3C sites. (C) Percentage of highly expressed RNAs with sites of 
increased current intensity. (D) Percentage of sites with increased current intensity among all sites in highly 
expressed RNAs.  
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Figure S6. Characterization of cleaved sites in AlkAniline-Seq and overlap with METTL2A-mediated m3C sites 
identified in this study. (A) Base composition at cleaved sites identified by AlkAniline-Seq. The bar plot shows 
the percentage of each nucleotide (C, T, A, G) at these cleaved sites. (B) Venn diagram illustrating the overlap 
between METTL2A-mediated m3C sites and cleaved C sites identified by AlkAniline-Seq.  
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Figure S7. Estimation of stoichiometries at METTL2A-mediated m3C sites. (A) Two-step process for estimating 
m3C stoichiometry based on current intensity distributions. Step 1: Two normal distributions representing m3C 
(red) and unmodified cytosine (blue) were determined using data from all samples, with shared parameters across 
samples. Step 2: The mixing proportions of these distributions were estimated separately for control and 
METTL2A-knockdown (KD) samples. The example shows CEACAM6-201 positions 1698–1702, where control 
samples exhibited 36% m3C and 64% C, while METTL2A KD samples showed 10% m3C and 90% C. (B) Volcano 
plot of differential m3C modification levels upon METTL2A knockdown. Red circles indicate sites with increased 
m3C levels (5 sites), blue circles indicate sites with decreased m3C levels (414 sites). The horizontal line represents 
FDR = 0.05 threshold.  
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Figure S8. m3C sites are enriched in coding sequences. (A) Logo plots of the sequences near m3C sites within 
MT-rRNAs, MT-mRNAs, and mRNAs. (B) Distribution of m3C sites near the start or stop codon of mRNAs. (C) 
Logo plots of the sequences near m3C sites across different regions of the mRNAs.  
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Figure S9. Structural context of METTL2A-mediated m3C sites in RNAs. (A) Proportion of m3C and other C 
bases located in unpaired (orange) or paired (cyan) regions in mitochondrial (MT) mRNAs and non-mitochondrial 
mRNAs. (B) Proportion of m3C and other C bases located in unpaired or paired regions within different transcript 
regions (5ʹUTR, CDS, 3ʹUTR) of mRNAs. (C) Comparison of overall RNA structural features (structureness, –
ΔG/nt) between m3C-containing RNAs and other RNAs in mitochondrial and non-mitochondrial mRNAs. No 
significant difference (n.s.) was observed.  
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Figure S10. METTL2A downregulates m3C RNAs. (A) The top ten biological processes enriched in the 30 
upregulated m3C RNAs. (B) Hexagonal two-dimensional heatmap showing the correlation of expression changes 
between the two siRNAs in the short-read RNA-seq data. Statistical significance was determined by Spearman’s 
correlation test. 2A KD: METTL2A knockdown (C) Venn diagrams showing the number of transcripts that were 
upregulated and downregulated by each siRNA in the short-read RNA-seq data. (D) Stacked bar plots showing 
the percentage of m3C RNAs and other RNAs. (E) Donut chart summarizing the changes in current intensity at 
all positions in m3C RNAs upon METTL2A knockdown. (F, G) The biological processes associated with the 
downregulated and upregulated transcripts shown in Figure 5E within the upregulated (G) and downregulated (F) 
genes in the short-read RNA-seq. Enrichment in the upregulated and downregulated transcripts in genes is shown 
in red and blue, respectively. 
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Figure S11. m3C sites near exon junctions contribute to isoform usage in S100A4 mRNA. (A) Bar plots showing 
the normalized expression of each S100A4 isoform under each condition. (2A KD: METTL2A knockdown) (B) 
Short-read RNA sequencing mapping patterns of S100A4 isoforms for each condition. Methylated isoforms are 
shown in green. Only isoforms representing more than 1% of total reads for the gene are shown. (C) Sanger 
sequencing chromatograms of the 5ʹ-exon junction region of S100A4-201 exon 3 in parental (top) and S100A4 
mutant (bottom) AsPC-1 cells. (D) Quantitative RT-PCR analysis of relative METTL2A (left), S100A4-201 
(middle), and S100A4-204 (right) expression in parental and mutant AsPC-1 cells after METTL2A knockdown. n 
= 3. Student’s t-test (*: p < 0.05, n.s.: not significant). (E) Relative cell growth at 96 h after METTL2A knockdown 
in parental (left) and S100A4 mutant (right) AsPC-1 cells. n = 4. *: p < 0.05; n.s.: not significant. (F) Quantitative 
RT-PCR analysis of relative S100A4-201 (left) and S100A4-204 (right) expression in AsPC-1 cells after 
knockdown of S100A4-201. n = 3. Student’s t-test (*: p < 0.05, n.s.: not significant). 201 KD: S100A4-201 
knockdown. (G) Relative cell growth at 96 h after S100A4-201 knockdown in AsPC-1 cells. n = 4. n.s.: not 
significant. 
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