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Slide preparation and Fluorescence in situ hybridization (FISH) analysis
For chromosome preparations, seeds were initially sprouted at room temperature in petri dishes on moist filter paper. Root tips were treated with N2O for 2 hours, then fixed with 90% glacial acetic acid at 4°C for 10 minutes. The meristematic tissue area of the root tips was excised using a blade and immersed in an enzyme mixture containing 1% pectinase and 2% cellulase at 37°C for 55 minutes. After enzymatic treatment, the root tips were washed three times with 70% ethanol and dissected using a needle. The nuclei of the cells were collected by centrifugation at 6,000 rpm for 30 seconds. To the collected cell nuclei, 30 μL of 100% glacial acetic acid was added, and the supernatant was vortexed through mixing. Subsequently, 10 μL of cell suspension was placed in the center of a slide and allowed to dry for 5 minutes. The slide was crosslinked under ultraviolet light for FISH experiment (125 mJ/cm2). Fluorescence intensity of centromeres (two telocentric chromosomes and other intact chromosomes) from the long-arm ditelosomes were analyzed using ImageJ (v1.50i) as described previously (Guo et al. 2016). Images were converted to 8-bit, uniformly threshold, and processed with Analyze Particles tool. Integrated density (IntDen) values were averaged per nucleus from ~ 20 cells per CSDt line. Statistical difference was indicated by double asterisks (**), representing highly significant differences at P < 0.01 (Student’s t-test).
Wheat whole-genome resequencing and data analysis
[bookmark: OLE_LINK58][bookmark: OLE_LINK59]Genomic DNA was extracted from the leaves of wheat ditelosomic lines using the Plant DNA extraction kit (TIANGEN #DP304-03, Beijing, China). Libraries were constructed and sequenced on the MGI DNBSEQ-T7 high-throughput sequencing platform with 150 bp paired-end reads. To ensure data quality, low-quality reads and adapters were removed from the raw sequencing data using fastp (v0.20.1) with parameters “-w 15 -l 30” (Chen et al. 2018). The cleaned reads were aligned to the near gap-free reference genome of CS (Liu et al. 2025; Wang et al. 2025) using BWA-MEM (v0.7.17) with default parameters (Li and Durbin 2009). Post-alignment, the mapping files were processed using SAMtools (v1.9), Picard (v2.27.1), BEDTools (v2.30.0) and deepTools (v3.5.0) (Li et al. 2009; Quinlan and Hall 2010; Ramirez et al. 2016). 

Chromatin immunoprecipitation assays with sequencing (ChIP-seq)
Wheat ditelosomic lines were subjected to ChIP-seq experiments following established protocols with minor adjustments (Liu et al. 2015). DNA purification was conducted using the MinElute PCR Purification Kit (QIAGEN #28006), and library preparation was performed with the ThruPLEX® DNA-seq Kit (TAKARA, #R400675) in combination with TruSeq® DNA Single Index (TAKARA, #R400695). The libraries were sequenced on the Illumina NovaSeq platform. deeptools software (v3.5.0) facilitated comparative analysis between samples, utilizing RPKM normalization (Ramirez et al. 2016). The distribution patterns of SS (G or C) and WW (A or T) dinucleotides within a ±200 bp range from the center of CENH3 nucleosomes were analyzed using the nucleR package (v2.28.0) (Flores and Orozco 2011). Utilizing the ‘scale-regions’ mode, bigWig files were processed with the computeMatrix tool to map the fine-scale distribution of CENH3 across full-length CRW repeats (Ramirez et al. 2016). CENH3 ChIP-seq data from the CS line was obtained from a previous study (Guo et al. 2016). Data processing and analysis were executed using custom scripts, and the results were visualized using R.

ATAC-seq library construction, sequencing and data analysis
ATAC-seq experiments on wheat lines from the coleoptiles were conducted using established methodologies (Wang et al. 2022). The process began with the extraction of the nuclei from the coleoptile using D-S-0.4 buffer. A flow cytometer (BD FacsAria II SORP) was then utilized to sort and collect 50,000 nuclei post-DAPI staining. These sorted nuclei were centrifuged at low temperature to remove the supernatant, followed by digestion with Tn5 transposase (Vazyme, #TD501) at 37°C for 30 minutes. The integration products were then purified using the MinElute PCR Purification Kit (QIAGEN, #28006). Library preparation was carried out using the NEBNext High-Fidelity 2×PCR Master Mix (NEB, #M0541) and the TruePrep Index Kit V2 for Illumina (Vazyme, #TD202). Libraries were then purified of adapter sequences using VAHTS DNA Clean Beads (Vazyme, #N411), and sequenced on the Illumina NovaSeq 6000 system, generating 150-bp paired-end reads. 
Clean data were aligned to the reference genome using Bowtie 2 (v2.4.1) (Langmead and Salzberg 2012), filtering out reads with MAPQ < 20 and PCR duplicates. Peak calling was performed using MACS2 (v2.2.6) (Feng et al. 2012) with the parameters “--shift -75 --extsize 150”. RPKM normalization was conducted using deepTools (v3.5.0) with a 10-bp windows (Ramirez et al. 2016). Enrichment at transcription start sites (TSS) was determined. Read counts of genes or target regions were calculated using featureCounts (Liao et al. 2013), and TPM values were derived. The distribution of reads in the centromere and pericentromere were assessed using corresponding windows, respectively.
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