

SUPPLEMENTAL MATERIAL

Recalibrating differential gene expression by genetic dosage

variance prioritizes functionally relevant genes

Philipp Rentzsch, Aaron Kollotzek, Kaushik Ram Ganapathy, Pejman Mohammadi, Tuuli

Lappalainen

Supplemental Table S1: Comparison of the Enrichment p-values and number of genes

between nominal FC and recalibration. Based selection of the top 2,000 genes in the Alasoo

et al. IFNG DE experiment.

Supplemental Table S2: Effect of tissue-specific recalibration. Comparison of the

Enrichment p-values and number of genes between nominal FC, mean-recalibration and

BRNCTXB-recalibration based selection of the top 700 genes in the psychENCODE ASD DE

experiment.

Supplemental Table S3: Table of all VG
H estimates. VG

H as generated from GTEx v8 for 50

tissues and the weighted harmonic mean of all tissues.

Supplemental Table S4: Table of all VG
HI estimates. VG

HI and predictions from VG
I are joined,

with VG
H taking precedence if both exist.

Supplemental Figure S1: GO term enrichment at different gene numbers. Equivalent figure

to Fig. 2 E&F but restricting enrichment to the top 1,000 (A&B) and 4,000 (C&D) genes for GO

term enrichment testing

Supplemental Figure S2: Gene Set Enrichment analysis of all significantly DE genes.

Similar to Fig. 2 E&F but based on ranking of genes (Gene Set Enrichment, GSE). A) GO term

GSE p-values when genes are sorted by nominal fold change (y-axis) compared to recalibrated

fold-changes (x-axis). B) Changes in the GSE p-values grouped by association.

Supplemental Figure S3: Enrichment in GO term cluster. Difference in GO term enrichments

equivalent to Fig 2F, but by GO cluster. Clusters consist of GO terms that contain similar genes.

The rightmost column are 34 GO terms that do not cluster with any other term.

Supplemental Figure S4: Absolute gene numbers matching per GO term before and after

recalibration. Based on selection of top 2,000 genes by absolute nominal and recalibrated fold

change respectively.

Supplemental Figure S5: Other perturbations from the same experimental series.

Equivalent figures to Fig. 2E&F but from different experiments. A&B) Perturbation with

Salmonella. C&D) Perturbation with IFNG and Salmonella.

Supplemental Figure S6: Recalibration with eQTL-based VG. A) Impact of recalibration on

GO term enrichment in the IFNG stimulus dataset when using eQTL-derived VG. eQTL-based

VG for recalibration resulted in a similar trend of raising regulatory over response GO terms

comparable, with generally higher enrichment p-values due to the larger number of genes (B).

This effect can be explained best by the higher number of GO terms associated with genes

prioritized by recalibration with VG
eQTL. The more significant p-values are hence likely the result

of the number of GO terms being correlated with mean expression (⍴Spearman’s = 0.65) and VG
eQTL

being strongly correlated with the GTEx mean TPM (C, ⍴Spearman’s = -0.76, compared to ⍴Spearman’s

= -0.2834 for VG
H). While some of this correlation is likely due to biology, with highly expressed

genes being more constrained (Lek et al. 2016), the high correlation for VG
eQTL may derive e.g.

from differences in the power of eQTL calling. This, and the fact that allele-specificAE data is

naturally unaffected by environmental and technical factors, motivated the primary use of VG
H for

recalibration.

Supplemental Figure S7: Recalibration of experiment where IPSCs are perturbed with

copper ion solution. A) Absolute nominal compared to recalibrated fold changes of the copper

ion perturbation experiment. Highlighted in red are genes associated with the GO term ‘cellular

response to copper ion’. Methallothionine genes (MT) are among the most down ranked genes

after recalibration. B) GO term enrichment of DE experiment in the top 2,000 genes before and

after recalibration.

Supplemental Figure S8: Recalibration of experiment where IPSCs are perturbed with

zinc ion solution. A) Absolute nominal compared to recalibrated fold changes of the zinc ion

perturbation experiment. Highlighted in red are genes associated with the GO term ‘intracellular

zinc ion homeostasis’. Methallothionine genes (MT) are among the most down ranked genes

after recalibration. B) GO term enrichment of DE experiment in the top 2,000 genes before and

after recalibration.

Supplemental Figure S9: Method outline to infer tissue-specific VG estimates. The method

enables the inference of VG estimates based on similar tissues and adjusted for gene expression

in each tissue.

Supplemental Figure S10: Effect of tissue-specific recalibration. Plot similar to Fig. 2E&F

but for the psychENCODE ASD experiment. Enrichment comparison of the top 700 genes

selected by recalibration with VG
HI,BRNCTXB and nominal fold change.

Supplemental Figure S11: GO term enrichments of top 2,000 genes from psychENCODE

Schizophrenia DE experiment. Recalibrated with brain-specific VG (VG
HI,BRNCTXB). Some of the

most important GO terms related to cell signaling and neurogenesis are highlighted.

Supplemental Figure S12: GO term enrichments of top 500 genes from psychENCODE

Bipolar Disorder DE experiment. Recalibrated with brain-specific VG (VG
HIAEML,BRNCTXB). Some of

the most important GO terms related to cell signaling that only appear after recalibration are

highlighted.

Supplemental Code S1: Implementation of recalibration in the R programming language.

#!/usr/bin/Rscript

Load required packages
library(readxl)
library(utils)
library(ggplot2)
library(gprofiler2)

Code to perform recalibration
#' @param df_de data.frame: contains differential expression per
gene. Row names
#' are Ensembl gene ids and one column contains the log fold change.
#' @param vg data.frame: contains the V^G estimate per gene (rows)
for one
#' or multiple tissues (columns). Default = [vg_h], the haplotype
expression
#' based V^G estimates calculated from GTEx v8.
#' @param tissue char: V^G tissue that is recalibrated against.
Default V^G are
#' generated for the GTEx tissues (in GTEx 6-letter code) or MEAN
(weighted
#' harmonic mean across tissues). Default = "MEAN".
#' @param remove_NA bool: whether genes for which no V^G estimate
exist should
#' be removed from the final data.frame. Default = FALSE.
#' @param sort_by char: sort result data.frame by one particular
column.
#' Default = NA
#' @param add_vg bool: adds the V^G estimates used for recalibration
to the
#' result data.frame. Default = FALSE.
#' @param variance_offset numeric: add an offset to all V^G
estimates. Default
#' = 0.
#' @param FC_col_name char: column of df_de that contains the log
fold change
#' values that are recalibrated. Default = "log2FoldChange".
#' @returns A modified data.frame with added recalibrated fold
changes.
#' @examples
#' df <- data.frame(
#' log2FoldChange = c(-2.95, 1.03, 4.34),
#' padj = c(0, 1e-2, 1e-5),
#' row.names = c("ENSG00000000003", "ENSG00000000419",
"ENSG00000000457")
#')
#'

#' recalibrateFoldChange(df)
#' recalibrateFoldChange(df, tissue = "NERVET", vg = vg_hi)
#' recalibrateFoldChange(df, sort_by = "padj", add_vg = TRUE)
#' @export
recalibrateFoldChange <- function(df_de, vg = "vg_h", tissue =
"MEAN", remove_NA = FALSE,
 sort_by = NA, add_vg = FALSE,
variance_offset = 0,
 FC_col_name = "log2FoldChange") {

 if (!is.element(tissue, colnames(vg))) {
 stop("Unknown tissue. You have to specify one GTEx tissue in
short GTEx notation or use 'MEAN'.")
 }

 # genes = row.names(vg)[which(!is.na(vg[,tissue]))]
 # vg_tissue = vg[which(!is.na(vg[,tissue])), tissue]

 vg_select <- vg[row.names(df_de), tissue]
 sdg_select <- sqrt(vg_select + variance_offset)

 df_de$recalibratedFC <- df_de[, FC_col_name] / sdg_select

 if (add_vg) {
 df_de$vg <- vg_select
 }

 if (remove_NA) {
 df_de <- df_de[which(!is.na(df_de$recalibratedFC)),]
 }

 if (is.element(sort_by, colnames(df_de))) {
 df_de <- df_de[order(df_de[, sort_by]),]
 }

 return(df_de)
}

load V^G_H from supplementary table S3
file_tblS3 = 'Supplemental_Table_S3.xlsx'
vgh_tbl <- read_excel(file_tblS3, sheet = "Supplemental Table S3")
vgh <- as.data.frame(vgh_tbl)
rownames(vgh) <- vgh$gene_id
vgh$gene_id <- NULL
vgh[] <- lapply(vgh, function(x) {
 suppressWarnings(as.numeric(as.character(x)))
})

Analysis example
Download the file from the URL and save it to the temporary file

url <-
"https://zenodo.org/records/839011/files/naive_vs_IFNg_DESeq2_fold_ch
ange.txt.gz"
temp_file_path <- tempfile(fileext = ".txt.gz")
download.file(url, destfile = temp_file_path, mode = "wb")
df <- read.table(temp_file_path, header = TRUE,
 row.names = "gene_id")
Delete the temporary file
unlink(temp_file_path)

df <- recalibrateFoldChange(df, remove_NA = TRUE)
ggplot(data = df, aes(y = recalibratedFC, x = log2FoldChange)) +
 theme_bw() +
 geom_point(alpha = 0.5, size = 1.2) +
 ylab(bquote("recalibrated fold change (log FC /" ~
 sqrt(V^G) ~ ")")) +
 xlab("nominal fold change (log FC)")

GO term enrichment comparison
top_xgenes <- 2000

select a background set
bg_genelist <- intersect(rownames(df), rownames(vg_h))

only select significant genes
df_sig <- subset(df, padj < 0.05)

select top genes by nominal and recalibrated FC
nfc_order <- order(abs(df_sig$log2FoldChange), decreasing = T)
rfc_order <- order(abs(df_sig$recalibratedFC), decreasing = T)
nfc_genes <- rownames(df_sig)[nfc_order[1:top_xgenes]]
rfc_genes <- rownames(df_sig)[rfc_order[1:top_xgenes]]

perform GO enrichment
enrichment <- function(gene.list, bglist) {
 gostres <- gost(
 query = gene.list, organism = "hsapiens", ordered_query = FALSE,
 multi_query = FALSE, significant = TRUE, exclude_iea = FALSE,
 measure_underrepresentation = FALSE, evcodes = FALSE,
 user_threshold = 0.05, correction_method = "g_SCS",
 domain_scope = "custom", custom_bg = bglist,
 numeric_ns = "", sources = "GO", as_short_link = FALSE
)
 gores <- as.data.frame(gostres$result[, c(3, 11)])
 rownames(gores) <- gores$term_name
 return(gores)
}
gores <- enrichment(nfc_genes, bg_genelist)
rfc_gores <- enrichment(rfc_genes, bg_genelist)

join enrichments
gores$p_value_rfc <- 1 # impute all non-hits from rfc
for (term in row.names(rfc_gores)) {
 if (!term %in% row.names(gores)) { # add missing GO terms to nfc
 gores[term, "term_name"] <- term
 gores[term, "p_value"] <- 1
 }
 gores[term, "p_value_rfc"] <- rfc_gores[term, "p_value"]
}
rownames(gores) <- gores$term_name

match GO terms based on strings
termAssociations <- c("regulation", "response")
gores$association <- "other"
for (term in row.names(gores)) {
 for (match in termAssociations) {
 if (grepl(match, term, fixed = T)) {
 if (gores[term, "association"] == "other") {
 gores[term, "association"] <- match
 } else {
 gores[term, "association"] <- paste(
 gores[term, "Association"], match, sep = " & ")
 }
 }
 }
}

plot GO term associations by method of gene selection
plot.colors <- c(
 "regulation" = "#0000FF", "regulation & response" = "#990099",
 "response" = "#FF0000", "other" = "#999999"
)
ggplot(gores, aes(-log10(p_value), -log10(p_value_rfc),
 color = association)) +
 geom_point() +
 geom_abline(intercept = 0, slope = 1, linetype = 2) +
 theme_minimal() +
 scale_color_manual(name = "GO Term association",
 values = plot.colors) +
 scale_x_continuous(name = "selected by nominal FC" ~
 -log[10] ~ "p-value") +
 scale_y_continuous(name = "selected by recalibrated FC" ~
 -log[10] ~ "p-value") +
 ggtitle(paste("GO enrichment of the top", top_xgenes, "genes")) +
 theme(plot.title = element_text(hjust = 0.5, face = "bold"))

Supplemental Code S2: Inference of VG for additional tissues in the R programming

language.

#!/usr/bin/Rscript

Load required packages
library(tidyverse)
library(data.table)
library(recalibration)

#' Load GTEx gene expression data from TPM file
#'
#' @param tpm_path Path to GTEx TPM file
#' @return Data frame containing tissue TPM values
load_gtex_data <- function(tpm_path) {
 # Read GTEx TPM file, skipping header rows
 tpm_data <- read.table(tpm_path, sep = "\t", skip = 2,
 header = TRUE)

 # Filter genes with zero expression across all tissues
 expressed_genes <- apply(tpm_data[3:56], 1, sum) > 0
 tpm_data <- tpm_data[expressed_genes,]

 # Clean Ensembl gene IDs by removing version numbers
 rownames(tpm_data) <- sapply(
 tpm_data$Name,
 function(x) strsplit(x, "\\.")[[1]][1]
)

 return(tpm_data)
}

#' Process GTEx colors information
#'
#' @param color_path Path to GTEx colors file
#' @return Data frame containing tissue color information
process_gtex_colors <- function(color_path) {
 gtex_infodf <- read.table(
 color_path,
 sep = "\t",
 header = TRUE,
 row.names = 'tissue_id'
)

 # Add Kidney Medulla entry
 gtex_infodf['Kidney_Medulla',] <- c('Kidney - Medulla',
 'KDNMED', '', '')

 # Convert tissue site detail to dot-string format
 gtex_infodf$dotstring <- sapply(
 gtex_infodf$tissue_site_detail,
 function(s) gsub("[-(),]", ".", s)
)
 rownames(gtex_infodf) <- gtex_infodf$dotstring

 return(gtex_infodf)
}

#' Calculate pseudocount-adjusted TPM values
#'
#' @param tpm_data Input TPM data
#' @return Data frame with adjusted TPM values
calculate_pseudocount_tpm <- function(tpm_data) {
 # Find minimum positive TPM value per tissue
 smallest_tissuetpm <- sapply(colnames(tpm_data)[3:56],
 function(i) {min(tpm_data[, i][tpm_data[, i] > 0])})

 # Convert to numeric and add pseudocount
 tpm_adj <- as.data.frame(sapply(tpm_data[, 3:56], as.numeric))
 rownames(tpm_adj) <- rownames(tpm_data)
 tpm_adj <- sweep(tpm_adj, 2, smallest_tissuetpm, "+")

 return(list(
 adjusted_tpm = tpm_adj,
 mean_tpm = apply(tpm_data[, 3:56], 1, mean)
))
}

#' Adjust VG estimates based on TPM values
#'
#' @param vgh_df VG data frame
#' @param tissue_tpm TPM data frame
#' @param mean_tpm Mean TPM values
#' @return Adjusted VG data frame
adjust_vg_estimates <- function(vgh_df, tissue_tpm, mean_tpm) {
 # Filter genes present in both datasets
 vgh_df_adj <- vgh_df[rownames(vgh_df) %in% rownames(tissue_tpm),]
 vgh_df_adj <- vgh_df_adj[!is.na(apply(vgh_df_adj,
 FUN = function(x) {mean(x, na.rm = TRUE)}, 1)),]

 tissues <- colnames(tissue_tpm)
 tissues <- tissues[tissues %in% colnames(vgh_df)]

 for (tissue in tissues) {
 df_tissue <- data.frame(
 row.names = rownames(vgh_df),
 vg = vgh_df[, tissue],
 tpm = tissue_tpm[rownames(vgh_df), tissue]

)

 df_tissue <- subset(df_tissue, vg > 0 & tpm > 0)
 genes <- rownames(df_tissue)

 model <- lm(log10(vg) ~ log10(tpm), data = df_tissue)
 df_tissue$vg_adj <- (mean_tpm[genes] / df_tissue$tpm) \
 ** model$coefficients[2] * df_tissue$vg

 vgh_df_adj[genes, tissue] <- df_tissue$vg_adj
 }

 return(vgh_df_adj)
}

#' Calculate weighted VG values based on correlation
#'
#' @param gene Gene symbol
#' @param weight Weight vector
#' @param correlations Correlation matrix
#' @param n Number of top correlations to consider
#' @return Weighted VG estimates
calculate_weighted_vg <- function(gene, weight, correlations, n = 5)
{
 # Filter non-NA weights
 weight <- weight[names(weight)[!is.na(weight)]]
 vgvalues <- vgh_df_adj[gene, names(weight)]

 # Filter tissues with VG values
 vgvalues <- vgvalues[names(vgvalues)[!is.na(vgvalues)]]
 weight <- weight[names(vgvalues)]

 # Select top n correlations if available
 if (length(weight) > n) {
 correlations <- correlations[names(vgvalues)]
 correlations <- correlations[order(correlations,
 decreasing = TRUE)[1:n]]
 vgvalues <- vgvalues[names(correlations)]
 weight <- weight[names(correlations)]
 }

 return(sum(weight * vgvalues) / sum(weight))
}

Main analysis pipeline
main() {
 # Load GTEx expression data. File from gtexportal.org
 tpm_data <-load_gtex_data(
'GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz')

 # Use GTEx colors file to match TPM and VG tissue names. From:
 #
github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt
 gtex_infodf <- process_gtex_colors('gtex_colors.txt')
 colnames(tpm_data)[3:56] <- \
 gtex_infodf[colnames(tpm_data)[3:56], 'tissue_abbrv']

 # Calculate adjusted TPM values (with pseudocount)
 tpm_results <- calculate_pseudocount_tpm(tpm_data)
 tissue_tpm_adj <- tpm_results$adjusted_tpm
 mean_tpm <- tpm_results$mean_tpm

 # Adjust VG estimates to mean
 vgh_df_adj <- adjust_vg_estimates(vgh_df, tissue_tpm_adj,
 mean_tpm)

 # Calculate tissue correlations
 tissue_cor <- cor(vgh_df, method = 'spearman',
 use = 'pairwise.complete.obs')

 # Create imputed VG estimates
 tissues <- colnames(tissue_tpm_adj)
 tissues <- tissues[tissues %in% colnames(vgh_df)]
 vgh_df_impute <- vgh_df_adj

 for (tissue in tissues) {
 # Get correlations excluding current tissue
 tissuesCorrelations <- tissue_cor[tissue,
 !colnames(tissue_cor) %in% c(tissue, 'MEAN')]

 # Calculate weights based on TPM and correlation
 tissueWeights <- as.data.frame(tissue_tpm_adj[,
 names(tissuesCorrelations)] ** 0 * tissuesCorrelations)

 # Impute VG estimates at mean expression
 vgh_df_impute[rownames(tissueWeights), tissue] <- sapply(
 rownames(tissueWeights),
 function(gene) calculate_weighted_vg(gene,
 tissueWeights[gene,], tissuesCorrelations)
)

 # Readjust from mean TPM to tissue expression
 df_tissue <- data.frame(
 row.names = rownames(vgh_df),
 vg = vgh_df[, tissue],
 tpm = tissue_tpm_adj[rownames(vgh_df), tissue]
)
 genes <- rownames(df_tissue)
 model <- lm(log10(vg) ~ log10(tpm),
 data = subset(df_tissue, vg > 0 & tpm > 0))

 df_tissue$vg_adj <- (df_tissue$tpm/mean_tpm[genes]) \
 ** model$coefficients[2] * vgh_df_impute[genes, tissue]
 vgh_df_impute[genes, tissue] <- df_tissue$vg_adj
 }

 # Save results
 write.table(vgh_df_impute, file = 'VGHimputed.tsv',
 quote = FALSE, sep = '\t')
}

Run main analysis
main()

