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Supplemental Table S1: Comparison of the Enrichment p-values and number of genes 

between nominal FC and recalibration. Based selection of the top 2,000 genes in the Alasoo 

et al. IFNG DE experiment. 

Supplemental Table S2: Effect of tissue-specific recalibration. Comparison of the 

Enrichment p-values and number of genes between nominal FC, mean-recalibration and 

BRNCTXB-recalibration based selection of the top 700 genes in the psychENCODE ASD DE 

experiment. 

Supplemental Table S3: Table of all VG
H estimates. VG

H as generated from GTEx v8 for 50 

tissues and the weighted harmonic mean of all tissues. 

Supplemental Table S4: Table of all VG
HI estimates. VG

HI and predictions from VG
I are joined, 

with VG
H taking precedence if both exist. 

 

 

 



 

 

Supplemental Figure S1: GO term enrichment at different gene numbers. Equivalent figure 

to Fig. 2 E&F but restricting enrichment to the top 1,000 (A&B) and 4,000 (C&D) genes for GO 

term enrichment testing 

 



 

Supplemental Figure S2: Gene Set Enrichment analysis of all significantly DE genes. 

Similar to Fig. 2 E&F but based on ranking of genes (Gene Set Enrichment, GSE). A) GO term 

GSE p-values when genes are sorted by nominal fold change (y-axis) compared to recalibrated 

fold-changes (x-axis). B) Changes in the GSE p-values grouped by association.  



 

 

Supplemental Figure S3: Enrichment in GO term cluster. Difference in GO term enrichments 

equivalent to Fig 2F, but by GO cluster. Clusters consist of GO terms that contain similar genes. 

The rightmost column are 34 GO terms that do not cluster with any other term. 

 



 

 

Supplemental Figure S4: Absolute gene numbers matching per GO term before and after 

recalibration. Based on selection of top 2,000 genes by absolute nominal and recalibrated fold 

change respectively. 



 

 

Supplemental Figure S5: Other perturbations from the same experimental series. 

Equivalent figures to Fig. 2E&F but from different experiments. A&B) Perturbation with 

Salmonella. C&D) Perturbation with IFNG and Salmonella. 



 

 

Supplemental Figure S6: Recalibration with eQTL-based VG. A) Impact of recalibration on 

GO term enrichment in the IFNG stimulus dataset when using eQTL-derived VG. eQTL-based 

VG for recalibration resulted in a similar trend of raising regulatory over response GO terms 

comparable, with generally higher enrichment p-values due to the larger number of genes (B). 

This effect can be explained best by the higher number of GO terms associated with genes 

prioritized by recalibration with VG
eQTL. The more significant p-values are hence likely the result 

of the number of GO terms being correlated with mean expression (⍴Spearman’s = 0.65) and VG
eQTL 

being strongly correlated with the GTEx mean TPM (C, ⍴Spearman’s = -0.76, compared to ⍴Spearman’s 

= -0.2834 for VG
H). While some of this correlation is likely due to biology, with highly expressed 

genes being more constrained (Lek et al. 2016), the high correlation for VG
eQTL may derive e.g. 

from differences in the power of eQTL calling. This, and the fact that allele-specificAE data is 



 

naturally unaffected by environmental and technical factors, motivated the primary use of VG
H for 

recalibration. 

 

Supplemental Figure S7: Recalibration of experiment where IPSCs are perturbed with 

copper ion solution. A) Absolute nominal compared to recalibrated fold changes of the copper 

ion perturbation experiment. Highlighted in red are genes associated with the GO term ‘cellular 

response to copper ion’. Methallothionine genes (MT) are among the most down ranked genes 

after recalibration. B) GO term enrichment of DE experiment in the top 2,000 genes before and 

after recalibration. 

 



 

 

Supplemental Figure S8: Recalibration of experiment where IPSCs are perturbed with 

zinc ion solution. A) Absolute nominal compared to recalibrated fold changes of the zinc ion 

perturbation experiment. Highlighted in red are genes associated with the GO term ‘intracellular 

zinc ion homeostasis’. Methallothionine genes (MT) are among the most down ranked genes 

after recalibration. B) GO term enrichment of DE experiment in the top 2,000 genes before and 

after recalibration. 

 



 

 

Supplemental Figure S9: Method outline to infer tissue-specific VG estimates. The method 

enables the inference of VG estimates based on similar tissues and adjusted for gene expression 

in each tissue. 

 

 

 

 



 

 

Supplemental Figure S10: Effect of tissue-specific recalibration. Plot similar to Fig. 2E&F 

but for the psychENCODE ASD experiment. Enrichment comparison of the top 700 genes 

selected by recalibration with VG
HI,BRNCTXB and nominal fold change. 

 



 

 

Supplemental Figure S11: GO term enrichments of top 2,000 genes from psychENCODE 

Schizophrenia DE experiment. Recalibrated with brain-specific VG (VG
HI,BRNCTXB). Some of the 

most important GO terms related to cell signaling and neurogenesis are highlighted.  



 

 

Supplemental Figure S12: GO term enrichments of top 500 genes from psychENCODE 

Bipolar Disorder DE experiment. Recalibrated with brain-specific VG (VG
HIAEML,BRNCTXB). Some of 

the most important GO terms related to cell signaling that only appear after recalibration are 

highlighted.  

 



 

Supplemental Code S1: Implementation of recalibration in the R programming language. 

#!/usr/bin/Rscript 
 
# Load required packages 
library(readxl) 
library(utils) 
library(ggplot2) 
library(gprofiler2) 
 
### Code to perform recalibration 
#' @param df_de data.frame: contains differential expression per 
gene. Row names 
#' are Ensembl gene ids and one column contains the log fold change. 
#' @param vg data.frame: contains the V^G estimate per gene (rows) 
for one 
#' or multiple tissues (columns). Default = [vg_h], the haplotype 
expression 
#' based V^G estimates calculated from GTEx v8. 
#' @param tissue char: V^G tissue that is recalibrated against. 
Default V^G are 
#' generated for the GTEx tissues (in GTEx 6-letter code) or MEAN 
(weighted 
#' harmonic mean across tissues). Default = "MEAN". 
#' @param remove_NA bool: whether genes for which no V^G estimate 
exist should 
#' be removed from the final data.frame. Default = FALSE. 
#' @param sort_by char: sort result data.frame by one particular 
column. 
#' Default = NA 
#' @param add_vg bool: adds the V^G estimates used for recalibration 
to the 
#' result data.frame. Default = FALSE. 
#' @param variance_offset numeric: add an offset to all V^G 
estimates. Default 
#' = 0. 
#' @param FC_col_name char: column of df_de that contains the log 
fold change 
#' values that are recalibrated. Default = "log2FoldChange". 
#' @returns A modified data.frame with added recalibrated fold 
changes. 
#' @examples 
#' df <- data.frame( 
#'   log2FoldChange = c(-2.95, 1.03, 4.34), 
#'   padj = c(0, 1e-2, 1e-5), 
#'   row.names = c("ENSG00000000003", "ENSG00000000419", 
"ENSG00000000457") 
#' ) 
#' 



 

#' recalibrateFoldChange(df) 
#' recalibrateFoldChange(df, tissue = "NERVET", vg = vg_hi) 
#' recalibrateFoldChange(df, sort_by = "padj", add_vg = TRUE) 
#' @export 
recalibrateFoldChange <- function(df_de, vg = "vg_h", tissue = 
"MEAN", remove_NA = FALSE, 
                                  sort_by = NA, add_vg = FALSE, 
variance_offset = 0, 
                                  FC_col_name = "log2FoldChange") { 
 
  if (!is.element(tissue, colnames(vg))) { 
    stop("Unknown tissue. You have to specify one GTEx tissue in 
short GTEx notation or use 'MEAN'.") 
  } 
 
  # genes = row.names(vg)[which(!is.na(vg[,tissue]))] 
  # vg_tissue = vg[which(!is.na(vg[,tissue])), tissue] 
 
  vg_select <- vg[row.names(df_de), tissue] 
  sdg_select <- sqrt(vg_select + variance_offset) 
 
  df_de$recalibratedFC <- df_de[, FC_col_name] / sdg_select 
 
  if (add_vg) { 
    df_de$vg <- vg_select 
  } 
 
  if (remove_NA) { 
    df_de <- df_de[which(!is.na(df_de$recalibratedFC)), ] 
  } 
 
  if (is.element(sort_by, colnames(df_de))) { 
    df_de <- df_de[order(df_de[, sort_by]), ] 
  } 
 
  return(df_de) 
} 
 
### load V^G_H from supplementary table S3 
file_tblS3 = 'Supplemental_Table_S3.xlsx' 
vgh_tbl <- read_excel(file_tblS3, sheet = "Supplemental Table S3") 
vgh <- as.data.frame(vgh_tbl) 
rownames(vgh) <- vgh$gene_id 
vgh$gene_id <- NULL 
vgh[] <- lapply(vgh, function(x) { 
  suppressWarnings(as.numeric(as.character(x))) 
}) 
 
### Analysis example 
# Download the file from the URL and save it to the temporary file 



 

url <- 
"https://zenodo.org/records/839011/files/naive_vs_IFNg_DESeq2_fold_ch
ange.txt.gz" 
temp_file_path <- tempfile(fileext = ".txt.gz") 
download.file(url, destfile = temp_file_path, mode = "wb") 
df <- read.table(temp_file_path, header = TRUE, 
                 row.names = "gene_id") 
# Delete the temporary file 
unlink(temp_file_path) 
 
df <- recalibrateFoldChange(df, remove_NA = TRUE) 
ggplot(data = df, aes(y = recalibratedFC, x = log2FoldChange)) + 
  theme_bw() + 
  geom_point(alpha = 0.5, size = 1.2) + 
  ylab(bquote("recalibrated fold change (log FC /" ~  
              sqrt(V^G) ~ ")")) + 
  xlab("nominal fold change (log FC)") 
 
### GO term enrichment comparison 
top_xgenes <- 2000 
 
# select a background set 
bg_genelist <- intersect(rownames(df), rownames(vg_h)) 
 
# only select significant genes 
df_sig <- subset(df, padj < 0.05) 
 
# select top genes by nominal and recalibrated FC 
nfc_order <- order(abs(df_sig$log2FoldChange), decreasing = T) 
rfc_order <- order(abs(df_sig$recalibratedFC), decreasing = T) 
nfc_genes <- rownames(df_sig)[nfc_order[1:top_xgenes]] 
rfc_genes <- rownames(df_sig)[rfc_order[1:top_xgenes]] 
 
# perform GO enrichment 
enrichment <- function(gene.list, bglist) { 
  gostres <- gost( 
    query = gene.list, organism = "hsapiens", ordered_query = FALSE, 
    multi_query = FALSE, significant = TRUE, exclude_iea = FALSE, 
    measure_underrepresentation = FALSE, evcodes = FALSE, 
    user_threshold = 0.05, correction_method = "g_SCS", 
    domain_scope = "custom", custom_bg = bglist, 
    numeric_ns = "", sources = "GO", as_short_link = FALSE 
  ) 
  gores <- as.data.frame(gostres$result[, c(3, 11)]) 
  rownames(gores) <- gores$term_name 
  return(gores) 
} 
gores <- enrichment(nfc_genes, bg_genelist) 
rfc_gores <- enrichment(rfc_genes, bg_genelist) 
 



 

# join enrichments 
gores$p_value_rfc <- 1 # impute all non-hits from rfc 
for (term in row.names(rfc_gores)) { 
  if (!term %in% row.names(gores)) { # add missing GO terms to nfc 
    gores[term, "term_name"] <- term 
    gores[term, "p_value"] <- 1 
  } 
  gores[term, "p_value_rfc"] <- rfc_gores[term, "p_value"] 
} 
rownames(gores) <- gores$term_name 
 
# match GO terms based on strings 
termAssociations <- c("regulation", "response") 
gores$association <- "other" 
for (term in row.names(gores)) { 
  for (match in termAssociations) { 
    if (grepl(match, term, fixed = T)) { 
      if (gores[term, "association"] == "other") { 
        gores[term, "association"] <- match 
      } else { 
        gores[term, "association"] <- paste( 
                      gores[term, "Association"], match, sep = " & ") 
      } 
    } 
  } 
} 
 
# plot GO term associations by method of gene selection 
plot.colors <- c( 
  "regulation" = "#0000FF", "regulation & response" = "#990099", 
  "response" = "#FF0000", "other" = "#999999" 
) 
ggplot(gores, aes(-log10(p_value), -log10(p_value_rfc), 
                  color = association)) + 
  geom_point() + 
  geom_abline(intercept = 0, slope = 1, linetype = 2) + 
  theme_minimal() + 
  scale_color_manual(name = "GO Term association", 
                     values = plot.colors) + 
  scale_x_continuous(name = "selected by nominal FC" ~ 
                     -log[10] ~ "p-value") + 
  scale_y_continuous(name = "selected by recalibrated FC" ~ 
                     -log[10] ~ "p-value") + 
  ggtitle(paste("GO enrichment of the top", top_xgenes, "genes")) + 
  theme(plot.title = element_text(hjust = 0.5, face = "bold")) 

 

 



 

Supplemental Code S2: Inference of VG for additional tissues in the R programming 

language. 

#!/usr/bin/Rscript 
 
# Load required packages 
library(tidyverse) 
library(data.table) 
library(recalibration) 
 
#' Load GTEx gene expression data from TPM file 
#' 
#' @param tpm_path Path to GTEx TPM file 
#' @return Data frame containing tissue TPM values 
load_gtex_data <- function(tpm_path) { 
    # Read GTEx TPM file, skipping header rows 
    tpm_data <- read.table(tpm_path, sep = "\t", skip = 2, 
                           header = TRUE) 
     
    # Filter genes with zero expression across all tissues 
    expressed_genes <- apply(tpm_data[3:56], 1, sum) > 0 
    tpm_data <- tpm_data[expressed_genes, ] 
     
    # Clean Ensembl gene IDs by removing version numbers 
    rownames(tpm_data) <- sapply( 
        tpm_data$Name, 
        function(x) strsplit(x, "\\.")[[1]][1] 
    ) 
     
    return(tpm_data) 
} 
 
#' Process GTEx colors information 
#' 
#' @param color_path Path to GTEx colors file 
#' @return Data frame containing tissue color information 
process_gtex_colors <- function(color_path) { 
    gtex_infodf <- read.table( 
        color_path, 
        sep = "\t", 
        header = TRUE, 
        row.names = 'tissue_id' 
    ) 
     
    # Add Kidney Medulla entry 
    gtex_infodf['Kidney_Medulla', ] <- c('Kidney - Medulla', 
                                         'KDNMED', '', '') 
     



 

    # Convert tissue site detail to dot-string format 
    gtex_infodf$dotstring <- sapply( 
            gtex_infodf$tissue_site_detail, 
            function(s) gsub("[-(), ]", ".", s) 
    ) 
    rownames(gtex_infodf) <- gtex_infodf$dotstring 
     
    return(gtex_infodf) 
} 
 
#' Calculate pseudocount-adjusted TPM values 
#' 
#' @param tpm_data Input TPM data 
#' @return Data frame with adjusted TPM values 
calculate_pseudocount_tpm <- function(tpm_data) { 
    # Find minimum positive TPM value per tissue 
    smallest_tissuetpm <- sapply(colnames(tpm_data)[3:56], 
        function(i) {min(tpm_data[, i][tpm_data[, i] > 0])}) 
     
    # Convert to numeric and add pseudocount 
    tpm_adj <- as.data.frame(sapply(tpm_data[, 3:56], as.numeric)) 
    rownames(tpm_adj) <- rownames(tpm_data) 
    tpm_adj <- sweep(tpm_adj, 2, smallest_tissuetpm, "+") 
     
    return(list( 
        adjusted_tpm = tpm_adj, 
        mean_tpm = apply(tpm_data[, 3:56], 1, mean) 
    )) 
} 
 
#' Adjust VG estimates based on TPM values 
#' 
#' @param vgh_df VG data frame 
#' @param tissue_tpm TPM data frame 
#' @param mean_tpm Mean TPM values 
#' @return Adjusted VG data frame 
adjust_vg_estimates <- function(vgh_df, tissue_tpm, mean_tpm) { 
    # Filter genes present in both datasets 
    vgh_df_adj <- vgh_df[rownames(vgh_df) %in% rownames(tissue_tpm),] 
    vgh_df_adj <- vgh_df_adj[!is.na(apply(vgh_df_adj, 
                FUN = function(x) {mean(x, na.rm = TRUE)}, 1)), ] 
     
    tissues <- colnames(tissue_tpm) 
    tissues <- tissues[tissues %in% colnames(vgh_df)] 
     
    for (tissue in tissues) { 
        df_tissue <- data.frame( 
            row.names = rownames(vgh_df), 
            vg = vgh_df[, tissue], 
            tpm = tissue_tpm[rownames(vgh_df), tissue] 



 

        ) 
         
        df_tissue <- subset(df_tissue, vg > 0 & tpm > 0) 
        genes <- rownames(df_tissue) 
         
        model <- lm(log10(vg) ~ log10(tpm), data = df_tissue) 
        df_tissue$vg_adj <- (mean_tpm[genes] / df_tissue$tpm) \ 
           ** model$coefficients[2] * df_tissue$vg 
         
        vgh_df_adj[genes, tissue] <- df_tissue$vg_adj 
    } 
     
    return(vgh_df_adj) 
} 
 
#' Calculate weighted VG values based on correlation 
#' 
#' @param gene Gene symbol 
#' @param weight Weight vector 
#' @param correlations Correlation matrix 
#' @param n Number of top correlations to consider 
#' @return Weighted VG estimates 
calculate_weighted_vg <- function(gene, weight, correlations, n = 5) 
{ 
    # Filter non-NA weights 
    weight <- weight[names(weight)[!is.na(weight)]] 
    vgvalues <- vgh_df_adj[gene, names(weight)] 
     
    # Filter tissues with VG values 
    vgvalues <- vgvalues[names(vgvalues)[!is.na(vgvalues)]] 
    weight <- weight[names(vgvalues)] 
     
    # Select top n correlations if available 
    if (length(weight) > n) { 
        correlations <- correlations[names(vgvalues)] 
        correlations <- correlations[order(correlations, 
                                  decreasing = TRUE)[1:n]] 
        vgvalues <- vgvalues[names(correlations)] 
        weight <- weight[names(correlations)] 
    } 
     
    return(sum(weight * vgvalues) / sum(weight)) 
} 
 
# Main analysis pipeline 
main() { 
    # Load GTEx expression data. File from gtexportal.org 
    tpm_data <-load_gtex_data( 
'GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz') 
     



 

    # Use GTEx colors file to match TPM and VG tissue names. From: 
    # 
github.com/stephenslab/gtexresults/blob/master/data/GTExColors.txt 
    gtex_infodf <- process_gtex_colors('gtex_colors.txt') 
    colnames(tpm_data)[3:56] <- \ 
             gtex_infodf[colnames(tpm_data)[3:56], 'tissue_abbrv'] 
     
    # Calculate adjusted TPM values (with pseudocount) 
    tpm_results <- calculate_pseudocount_tpm(tpm_data) 
    tissue_tpm_adj <- tpm_results$adjusted_tpm 
    mean_tpm <- tpm_results$mean_tpm 
     
    # Adjust VG estimates to mean 
    vgh_df_adj <- adjust_vg_estimates(vgh_df, tissue_tpm_adj,  
                                       mean_tpm) 
     
    # Calculate tissue correlations 
    tissue_cor <- cor(vgh_df, method = 'spearman', 
                        use = 'pairwise.complete.obs') 
     
    # Create imputed VG estimates 
    tissues <- colnames(tissue_tpm_adj) 
    tissues <- tissues[tissues %in% colnames(vgh_df)] 
    vgh_df_impute <- vgh_df_adj 
     
    for (tissue in tissues) { 
        # Get correlations excluding current tissue 
        tissuesCorrelations <- tissue_cor[tissue,  
               !colnames(tissue_cor) %in% c(tissue, 'MEAN')] 
         
        # Calculate weights based on TPM and correlation 
        tissueWeights <- as.data.frame(tissue_tpm_adj[, 
          names(tissuesCorrelations)] ** 0 * tissuesCorrelations) 
         
        # Impute VG estimates at mean expression 
        vgh_df_impute[rownames(tissueWeights), tissue] <- sapply( 
            rownames(tissueWeights), 
            function(gene) calculate_weighted_vg(gene, 
                   tissueWeights[gene, ], tissuesCorrelations) 
        ) 
         
        # Readjust from mean TPM to tissue expression 
        df_tissue <- data.frame( 
            row.names = rownames(vgh_df), 
            vg = vgh_df[, tissue], 
            tpm = tissue_tpm_adj[rownames(vgh_df), tissue] 
        ) 
        genes <- rownames(df_tissue) 
        model <- lm(log10(vg) ~ log10(tpm), 
                 data = subset(df_tissue, vg > 0 & tpm > 0)) 



 

        df_tissue$vg_adj <- (df_tissue$tpm/mean_tpm[genes]) \ 
          ** model$coefficients[2] * vgh_df_impute[genes, tissue] 
        vgh_df_impute[genes, tissue] <- df_tissue$vg_adj 
    } 
     
    # Save results 
    write.table(vgh_df_impute, file = 'VGHimputed.tsv', 
                quote = FALSE, sep = '\t') 
} 
 
# Run main analysis 
main() 

 

 

 

 


