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S1 Methods

S1.1 Range-factorized equivalence class

An equivalence class denotes an association from a set of transcripts to a set of reads, that are mapped to all the
transcripts in that set. A range-factorized equivalence class in addition also encodes the mapping quality, with a single
class constituting a set of pairs (¢;,w;) rather than just a set of ¢;, where ¢; denotes the transcript and w; represents the

average conditional probability with which the fragments in the equivalence class arose from that transcript.

S1.2 TreeTerminus

For a given RNA-Seq experiment consisting of M samples, TreeTerminus [6] outputs a forest of K trees T = {T}, T, ..., Tk },
that summarize the abundance uncertainty structure across all the M samples. The leaves of the individual trees comprise
the set of quantified transcripts and each internal node represents an aggregation of the set of transcripts belonging to
the subtree rooted at it, with no two trees having an overlapping set of transcripts/leaves. The input to TreeTerminus is
the salmon [7] quantification estimates, L inferential replicates, and range-factorized equivalence classes [5] corresponding
to each RNA-Seq sample m, m € {1,..., M}. The L inferential replicates are produced either through Gibbs sampling or

bootstrap sampling and are denoted by Z,,; = {Imi, s Imiss --> Imiy, 1, where Ip,;, represents the counts of the transcript 4
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for sample m at the [** Gibbs/bootstrap iteration. The inferential replicate counts for an inner node are found by adding
inferential replicate counts of each constituent transcript individually. The tree represents the order in which the different
transcripts are aggregated into transcript groups starting from the leaf nodes and encoding different resolution layers for
interpretation of the abundance of transcriptional groups, with uncertainty generally decreasing as one ascends the tree
from the leaves. The uncertainty for any node (leaf or inner node) n for a given sample m is estimated using the metric

infRV defined in [3], over Z,,,, as:

max(0f, = i1, 0)

infRV,,,,, =
" (1, + pc

+d (1)

where pg, .07, are the mean, variance over the L inferential replicates for a sample m and node n, pc is a pseudocount

(with a default value of 5) and d is a small global shift (with a default value of 0.01). The nodes situated at the lower
heights in a branch in the tree usually represent the set of nodes for which large reduction in infRV was observed compared
to its underlying children nodes. For most nodes in the tree, the underlying transcripts belong to the same gene, due to
large sequence overlap between them which is a driving factor behind uncertainty. However, the transcripts in a node
can also map to different genes, as there can be overlapping sequence regions between different genes as well, and also
sequence similarity between genes belonging to a gene family. While a reduction in infRV governs how transcripts are
aggregated into nodes, it does not mean that all the underlying transcripts will have similar strength and direction of
differential signal between the conditions of interest.

Unified Tree - Once the forest from TreeTerminus is obtained, a unified tree is constructed. For the sake of simplicity,
let T denote the unified tree. The unified tree is constructed using the R package beaveR(https://github.com/NPSDC/b

eaveR). This tree is constructed by first creating a new root node and assigning all trees in the forest and the remaining

transcripts in the transcriptome not covered by the trees as children of this root node.

S1.3 Median-ratio scaled counts for the nodes in the tree

Using the formulation from [3], let Y denote the counts matrix obtained for Salmon for the transcript set containing M
samples 1,..,m and P transcripts 1,..,p, with Yﬁ representing the counts for transcript j in sample i. Let the matrix

Y79 denote the counts obtained for all the nodes in the tree 7 that has P leaf nodes, where for an internal node n,
[A(m)]

YJZTO — Z YO

d=1

tis Vta € A(n), where A(n) denote the indexes of the descendant transcripts of node n. The counts YJZ— are

divided by a bias length term b;;, accounting for the length w.r.t other transcripts:

Lji
bji = J

(HZL lji) %


https://github.com/NPSDC/beaveR
https://github.com/NPSDC/beaveR
https://github.com/NPSDC/beaveR
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Then we divide the counts by b;; as

T0
YT — YL
Ji bs

The counts are then scaled to the geometric mean of sequencing depth as

YT* m P m
ji

THx __ T0
Vi ==p v S > v
j=174ji i=1j=1

For each sample i, a median-ratio size factor is computed as

_ . P Jt
$; = median; —————

(e v)

m

We compute the size factor over only the leaf nodes. The final normalized counts are then computed as:

T %

T _ g
vl =——
Sq

The lengths of the inner nodes are computed using the strategy employed by summarizeToGene function in the R

package tximport [4]. The length of an inner node n for sample 7 is computed as:

[A(n)]
Z ltditpmtdi

T _ =2
i =~ ,Vtq € A(n)

tpmey;
d=1

Here tpm refers to transcripts per million estimates that are provided by Salmon.
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S1.4 Distance between nodes

The distance between the set of nodes Ny and IV, is computed as :

diSt(Nd, Np) + diSt(Np, Nd)

D(Nda N:D) = 9 )
| Na|
; d(Ng;)
dZ’St(NEH Nb) = “”TH,
0 if Ng; € Ny
Path_length(Ng;, Nypi) if Ny, € Ny and Ny is either an ancestor
d(Ngi) = or descendent of N;

Path_length(Ny;,root) +1 if N,; ¢ N and no ancestor or

descendant of N,; exists in IV

where Ng, N, denote the node set output by mehenDi at the default parameters and parameter set p respectively.
Path_length(Ng;, Npi) denote the length of the path between the nodes N, and Np,. We are computing the aver-
age distance per node between the two sets. If the same node is present in both sets, the distance between them would
be 0. Similarly, if for a node belonging to one set, there exists a node in the other set which is an ancestor/descendant for
it, then the distance is computed by calculating the length of the path between them on the tree. On the other hand, if
there is no ancestor/descendant for a node in the other set, then the distance is the length of the path from the root to
that node with 1 added. 1 is added since this would be the lowest height node in the other set. The nodes that don’t have
an ancestor or descendant in the other set, can be the largest contributing factor to the distance metric and can create
asymmetry for the overall distance metric aka dist(Ngy, Ny) # dist(Ny, N,), as they do not directly have a counterpart
in the other set. This can skew the metric, depending on the set w.r.t which distance is computed, especially if that set
consists of nodes that represent unique branches in the tree. To balance this, our final distance metric D(Ng, N,) is the

average of dist(Ng, Np), dist(Np, Ng).

S2 Note

S2.1 Comparing biological and inferential relative variance and its incorporation by Swish

There exists biological variance for a gene across samples in an experiment, with overdispersion modelled using a negative
binomial/quasi-Poisson distribution in many parametric differential testing methods[2], [1]. However, the inferential
replicates used by TreeTerminus and mehenDi are generated for each biological sample. These inferential replicates provide

a measure of how certain we are about the abundance estimates for a biological sample using the metric of inferential
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relative variance (infRV). The inferential replicates mirror the technical replicates, for which the Poisson distribution is
assumed (mean same as variance); any deviation from this trend is captured by infRV, with a higher value of this metric
denoting a high uncertainty associated with the inference of that transcript’s abundance. The infRV is computed for
each node (which can be a gene, a transcript, or a transcript-group) for a given biological sample using the inferential
replicates. This metric enables our method to create tree(s) for each biological sample individually, such that uncertainty
decreases upon ascending the tree(s) or across all biological samples in an RNA-seq experiment. Note that inferential
variance for a sample can be high or low regardless of the biological variability seen in the experiment. Swish tries to takes
into account both types of variance in its inference procedure: the biological variance is involved when computing the
Wilcoxon statistic (for the two group mode) while inferential variance per sample is taken into account when integrating

the base test statistic over inferential replicates.

S2.2 Role of equivalence classes in capturing inferential uncertainty

The equivalence class is data-dependent and represents a relationship between the set of reads and transcripts, where each
equivalence class contains the reads that map to the same set of transcripts. Thus, equivalence classes are a function of the
data and mapping/alignment algorithm, and we do not have a direct choice in the presented method over the equivalence
relation that is defined and the classes that are produced. That is, the equivalence classes are a deterministic function of
the input data and the alignment algorithm applied. The equivalence classes encapsulate all read-to-transcript mapping
uncertainty, conditional on the mapping/alignment method.

Ideally, if each read is mapped uniquely to only a single transcript, then there will be no uncertainty, and the number
of equivalence classes will be equal to the total number of unique transcripts that are mapped by the entire read set. The
only way an equivalence class may be wrongly formed is if the reads are mapped incorrectly, which is a function of the
mapping algorithm. In this case, any quantification algorithm and the corresponding downstream analysis will suffer.

It is possible that inferential replicates might not be able to fully capture the uncertainty profile for certain transcripts
due to the limitations of a particular posterior/bootstrap sampling algorithm, but they still provide much more information

than a point estimate.

S2.3 Effect of batch effects in capturing uncertainty and on mehenDi output

There can only be two potential places where batch effects might pose an issue, namely, tree construction and downstream
differential testing. The batch effects can alter the counts. When it comes to tree construction, the trees are constructed
using the metric inferential relative variance, which is computed for each sample separately, thus minimizing the issues
which occur due to batch effects, which occur when the counts across samples are compared. Note that the InfRV by
construction is stabilized across the mean count. While subtle differences in uncertainty structure might be observed for

a given sample due to batch effects, we do not anticipate nor have we ever observed substantial changes in the final tree
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structures that are obtained across samples. For the differential analysis, we don’t think batch effects would pose an issue
that would be unique to our analysis. We can use mehenDi in combination with a testing procedure that controls for
batch using standard methods (Swish can also be run stratified across batch, or inferred batch variation can be regressed
out of inferential replicate count matrices). We recommend to control for batch effects in the differential testing method if
it present in the diagnostic plots (e.g. PCA). Moreover, we provide an explicit example of such in the current manuscript.
Specifically, in this manuscript, we have analyzed the ChimpBrain dataset which shows evidence for batch effects.We use

the p-values computed by Swish accounting for batch-effects.
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» 53 Figures

Figure S1: Distribution of the p-values for the leaf and inner nodes on the null simulations, when the hypothesis testing
is carried out separately.
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Figure S2: UpSet plot covering the number of true positive transcripts that are covered by the nodes that are output by
the different methods for the BrSimNorm dataset nominal FDR.
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Figure S3: UpSet plot covering the number of true positive transcripts that are covered by the nodes that are output by

the different methods for the BrSimLow dataset at the 0.01 nominal FDR.
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Figure S4: True Positive Rates and Empirical False Discovery Rates at the different nominal FDR thresholds by individ-

ually varying the parameters minP and mIrvThresh for the BrSimNorm dataset. Both the metrics have been rounded to 3

decimal places
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Figure S5: Example of a mehenDi node that is overaggregated in Terminus for the BrSimNorm dataset. (A) Subtree
representing the transcripts covered by the Terminus group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S6: Example of a mehenDi node that is overaggregated in Terminus for the BrSimNorm dataset. (A) Subtree
representing the transcripts covered by the Terminus group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S7: Example of a mehenDi node that is not aggregated enough in Terminus for the BrSimNorm dataset. (A)
Subtree representing the transcripts covered by the mehenDi group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S8: Example of a mehenDi node that is not aggregated enough in Terminus for the BrSimNorm dataset. (A)
Subtree representing the transcripts covered by the mehenDi group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S9: Examination of error metrics for the unique nodes obtained for treeclimbR when doing treeclimbR vs Txps
analysis at the different nominal FDR thresholds. We vary the magnitude of log fold change (LFC) and plot the empirical
FDR and the total number of nodes that are left after filtering the unique nodes based on LFC.
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Figure S10: Examination of error metrics for the unique nodes obtained for Txps when doing treeclimbR vs Txps analysis

at the different nominal FDR thresholds. We vary the magnitude of log fold change (LFC) and plot the empirical FDR

and the total number of nodes that are left after filtering the unique nodes based on LFC.
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Figure S11: The first two dimensions of the PCA using the top 1000 variable features for the MouseMuscle dataset
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Figure S12: The average distance between the nodes obtained for mehenDi using default parameters and varying minP

and mIrvThresh individually for the MouseMuscle dataset.
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Figure S13: UpSet plot covering the number of transcripts that are covered by the nodes that are output by the different

methods for the MouseMuscle dataset.
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Figure S14: Examining the transcript profile for the gene Hmcen2 in the MouseMuscle dataset. A) Transcripts in a pileup
style. B) Tree representing the transcripts covered by the gene Hmcn2, with the red node representing the transcripts
covered by the mehenDi selected node. C) Inferential replicates for the transcript ENSMUST00000138821.7, which had

the lowest p-value among all the transcripts in the tree. D) Inferential replicates for the mehenDi selected node.
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Figure S15: Examining the transcript profile for the gene Emid! in the MouseMuscle dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene Fmidl, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000151906.7, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S16: Examining the transcript profile for the gene Prss55 in the MouseMuscle dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene Prss55, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000171503.7, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S17: Examining the transcript profile for the gene Stard10 in the MouseMuscle dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene Stard10, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST000000032927.13, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S18: Examining the transcript profile for the gene Syk in the MouseMuscle dataset.

style.

(A) Transcripts in a pileup

(B) Tree representing the transcripts covered by the gene SYK, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000055087.6, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S19: UpSet plot covering the number of transcripts that are covered by the nodes that are output by the different
methods for the ChimpBrain dataset.
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Figure S20: Examining the transcript profile for the gene CABINI in the ChimpBrain dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene CABINI, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUSTO00000103768, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S21: Examining the transcript profile for the gene CATSPERG in the ChimpBrain dataset. (A) Transcripts in a
pileup style. (B) Tree representing the transcripts covered by the gene CATSPERG, with the red node representing the
transcripts covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000020240,
which had the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected

node.
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Figure S22: Examining the transcript profile for the gene EYA in the ChimpBrain dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene EYAI, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUSTO00000097751, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S23: Examining the transcript profile for the gene MCF2 in the ChimpBrain dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene MCF2, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000105901, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S24: Examining the transcript profile for the gene MYO5C in the ChimpBrain dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene MYOS5C, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000013074, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S25: Examining the transcript profile for the gene PIEZOZ2 in the ChimpBrain dataset. (A) Transcripts in a pileup
style. (B) Tree representing the transcripts covered by the gene PIEZ02, with the red node representing the transcripts
covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000094046, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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