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S1 Methods10

S1.1 Range-factorized equivalence class11

An equivalence class denotes an association from a set of transcripts to a set of reads, that are mapped to all the12

transcripts in that set. A range-factorized equivalence class in addition also encodes the mapping quality, with a single13

class constituting a set of pairs (ti, wi) rather than just a set of ti, where ti denotes the transcript and wi represents the14

average conditional probability with which the fragments in the equivalence class arose from that transcript.15

S1.2 TreeTerminus16

For a given RNA-Seq experiment consisting ofM samples, TreeTerminus [6] outputs a forest ofK trees T = {T1, T2, ..., TK},17

that summarize the abundance uncertainty structure across all the M samples. The leaves of the individual trees comprise18

the set of quantified transcripts and each internal node represents an aggregation of the set of transcripts belonging to19

the subtree rooted at it, with no two trees having an overlapping set of transcripts/leaves. The input to TreeTerminus is20

the salmon [7] quantification estimates, L inferential replicates, and range-factorized equivalence classes [5] corresponding21

to each RNA-Seq sample m, m ∈ {1, ...,M}. The L inferential replicates are produced either through Gibbs sampling or22

bootstrap sampling and are denoted by Imi = {Imi1 , Imi2 , ..., ImiL}, where Imil represents the counts of the transcript i23
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for sample m at the lth Gibbs/bootstrap iteration. The inferential replicate counts for an inner node are found by adding24

inferential replicate counts of each constituent transcript individually. The tree represents the order in which the different25

transcripts are aggregated into transcript groups starting from the leaf nodes and encoding different resolution layers for26

interpretation of the abundance of transcriptional groups, with uncertainty generally decreasing as one ascends the tree27

from the leaves. The uncertainty for any node (leaf or inner node) n for a given sample m is estimated using the metric28

infRV defined in [3], over Imn as:29

infRVmn =
max(σ2

Imn
− µImn

, 0)

µImn + pc
+ d (1)

where µImn
, σImn

are the mean, variance over the L inferential replicates for a samplem and node n, pc is a pseudocount30

(with a default value of 5) and d is a small global shift (with a default value of 0.01). The nodes situated at the lower31

heights in a branch in the tree usually represent the set of nodes for which large reduction in infRV was observed compared32

to its underlying children nodes. For most nodes in the tree, the underlying transcripts belong to the same gene, due to33

large sequence overlap between them which is a driving factor behind uncertainty. However, the transcripts in a node34

can also map to different genes, as there can be overlapping sequence regions between different genes as well, and also35

sequence similarity between genes belonging to a gene family. While a reduction in infRV governs how transcripts are36

aggregated into nodes, it does not mean that all the underlying transcripts will have similar strength and direction of37

differential signal between the conditions of interest.38

Unified Tree - Once the forest from TreeTerminus is obtained, a unified tree is constructed. For the sake of simplicity,39

let T denote the unified tree. The unified tree is constructed using the R package beaveR(https://github.com/NPSDC/b40

eaveR). This tree is constructed by first creating a new root node and assigning all trees in the forest and the remaining41

transcripts in the transcriptome not covered by the trees as children of this root node.42

S1.3 Median-ratio scaled counts for the nodes in the tree43

Using the formulation from [3], let Y 0 denote the counts matrix obtained for Salmon for the transcript set containing M44

samples 1, ..,m and P transcripts 1, .., p, with Y 0
ji representing the counts for transcript j in sample i. Let the matrix45

Y T 0 denote the counts obtained for all the nodes in the tree T that has P leaf nodes, where for an internal node n,46

Y T 0
ni =

|Λ(n)|∑
d=1

Y 0
tdi

,∀td ∈ Λ(n), where Λ(n) denote the indexes of the descendant transcripts of node n. The counts Y T
ji are47

divided by a bias length term bji, accounting for the length w.r.t other transcripts:48

bji =
lji

(
∏m

i=1 lji)
1
m
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Then we divide the counts by bji as49

Y T ∗
ji =

Y T 0
ji

bji

The counts are then scaled to the geometric mean of sequencing depth as50

Y T ∗∗
ji =

Y T ∗
ji∑P

j=1 Y
T ∗
ji

×

 m∏
i=1

P∑
j=1

Y T 0
ji

 1
m

For each sample i, a median-ratio size factor is computed as51

si = medianPj
Y T ∗∗
ji(∏m

k=1 Y
T ∗∗
jk

) 1
m

We compute the size factor over only the leaf nodes. The final normalized counts are then computed as:52

Y T
ji =

Y T ∗∗
ji

si

The lengths of the inner nodes are computed using the strategy employed by summarizeToGene function in the R53

package tximport [4]. The length of an inner node n for sample i is computed as:54

lTni =

|Λ(n)|∑
d=1

ltditpmtdi

|Λ(n)|∑
d=1

tpmtdi

,∀td ∈ Λ(n)

Here tpm refers to transcripts per million estimates that are provided by Salmon.55

3



S1.4 Distance between nodes56

The distance between the set of nodes Nd and Np is computed as :57

D(Nd, Np) =
dist(Nd, Np) + dist(Np, Nd)

2
,

dist(Na, Nb) =

|Na|∑
i=1

d(Nai)

∥Na∥
,

d(Nai) =



0 if Nai ∈ Nb

Path length(Nai, Nbk) if Nbk ∈ Nb and Nbk is either an ancestor

or descendent of Nai

Path length(Nai, root) + 1 if Nai /∈ Nb and no ancestor or

descendant of Nai exists in Nb

where Nd, Np denote the node set output by mehenDi at the default parameters and parameter set p respectively.58

Path length(Nai, Nbk) denote the length of the path between the nodes Nai and Nbk. We are computing the aver-59

age distance per node between the two sets. If the same node is present in both sets, the distance between them would60

be 0. Similarly, if for a node belonging to one set, there exists a node in the other set which is an ancestor/descendant for61

it, then the distance is computed by calculating the length of the path between them on the tree. On the other hand, if62

there is no ancestor/descendant for a node in the other set, then the distance is the length of the path from the root to63

that node with 1 added. 1 is added since this would be the lowest height node in the other set. The nodes that don’t have64

an ancestor or descendant in the other set, can be the largest contributing factor to the distance metric and can create65

asymmetry for the overall distance metric aka dist(Na, Nb) ̸= dist(Nb, Na), as they do not directly have a counterpart66

in the other set. This can skew the metric, depending on the set w.r.t which distance is computed, especially if that set67

consists of nodes that represent unique branches in the tree. To balance this, our final distance metric D(Nd, Np) is the68

average of dist(Nd, Np), dist(Np, Nd).69

S2 Note70

S2.1 Comparing biological and inferential relative variance and its incorporation by Swish71

There exists biological variance for a gene across samples in an experiment, with overdispersion modelled using a negative72

binomial/quasi-Poisson distribution in many parametric differential testing methods[2], [1]. However, the inferential73

replicates used by TreeTerminus and mehenDi are generated for each biological sample. These inferential replicates provide74

a measure of how certain we are about the abundance estimates for a biological sample using the metric of inferential75
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relative variance (infRV). The inferential replicates mirror the technical replicates, for which the Poisson distribution is76

assumed (mean same as variance); any deviation from this trend is captured by infRV, with a higher value of this metric77

denoting a high uncertainty associated with the inference of that transcript’s abundance. The infRV is computed for78

each node (which can be a gene, a transcript, or a transcript-group) for a given biological sample using the inferential79

replicates. This metric enables our method to create tree(s) for each biological sample individually, such that uncertainty80

decreases upon ascending the tree(s) or across all biological samples in an RNA-seq experiment. Note that inferential81

variance for a sample can be high or low regardless of the biological variability seen in the experiment. Swish tries to takes82

into account both types of variance in its inference procedure: the biological variance is involved when computing the83

Wilcoxon statistic (for the two group mode) while inferential variance per sample is taken into account when integrating84

the base test statistic over inferential replicates.85

S2.2 Role of equivalence classes in capturing inferential uncertainty86

The equivalence class is data-dependent and represents a relationship between the set of reads and transcripts, where each87

equivalence class contains the reads that map to the same set of transcripts. Thus, equivalence classes are a function of the88

data and mapping/alignment algorithm, and we do not have a direct choice in the presented method over the equivalence89

relation that is defined and the classes that are produced. That is, the equivalence classes are a deterministic function of90

the input data and the alignment algorithm applied. The equivalence classes encapsulate all read-to-transcript mapping91

uncertainty, conditional on the mapping/alignment method.92

Ideally, if each read is mapped uniquely to only a single transcript, then there will be no uncertainty, and the number93

of equivalence classes will be equal to the total number of unique transcripts that are mapped by the entire read set. The94

only way an equivalence class may be wrongly formed is if the reads are mapped incorrectly, which is a function of the95

mapping algorithm. In this case, any quantification algorithm and the corresponding downstream analysis will suffer.96

It is possible that inferential replicates might not be able to fully capture the uncertainty profile for certain transcripts97

due to the limitations of a particular posterior/bootstrap sampling algorithm, but they still provide much more information98

than a point estimate.99

S2.3 Effect of batch effects in capturing uncertainty and on mehenDi output100

There can only be two potential places where batch effects might pose an issue, namely, tree construction and downstream101

differential testing. The batch effects can alter the counts. When it comes to tree construction, the trees are constructed102

using the metric inferential relative variance, which is computed for each sample separately, thus minimizing the issues103

which occur due to batch effects, which occur when the counts across samples are compared. Note that the InfRV by104

construction is stabilized across the mean count. While subtle differences in uncertainty structure might be observed for105

a given sample due to batch effects, we do not anticipate nor have we ever observed substantial changes in the final tree106
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structures that are obtained across samples. For the differential analysis, we don’t think batch effects would pose an issue107

that would be unique to our analysis. We can use mehenDi in combination with a testing procedure that controls for108

batch using standard methods (Swish can also be run stratified across batch, or inferred batch variation can be regressed109

out of inferential replicate count matrices). We recommend to control for batch effects in the differential testing method if110

it present in the diagnostic plots (e.g. PCA). Moreover, we provide an explicit example of such in the current manuscript.111

Specifically, in this manuscript, we have analyzed the ChimpBrain dataset which shows evidence for batch effects.We use112

the p-values computed by Swish accounting for batch-effects.113
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S3 Figures129

Figure S1: Distribution of the p-values for the leaf and inner nodes on the null simulations, when the hypothesis testing

is carried out separately.

Figure S2: UpSet plot covering the number of true positive transcripts that are covered by the nodes that are output by

the different methods for the BrSimNorm dataset nominal FDR.

8



Figure S3: UpSet plot covering the number of true positive transcripts that are covered by the nodes that are output by

the different methods for the BrSimLow dataset at the 0.01 nominal FDR.

Figure S4: True Positive Rates and Empirical False Discovery Rates at the different nominal FDR thresholds by individ-

ually varying the parameters minP and mIrvThresh for the BrSimNorm dataset. Both the metrics have been rounded to 3

decimal places
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Figure S5: Example of a mehenDi node that is overaggregated in Terminus for the BrSimNorm dataset. (A) Subtree

representing the transcripts covered by the Terminus group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S6: Example of a mehenDi node that is overaggregated in Terminus for the BrSimNorm dataset. (A) Subtree

representing the transcripts covered by the Terminus group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S7: Example of a mehenDi node that is not aggregated enough in Terminus for the BrSimNorm dataset. (A)

Subtree representing the transcripts covered by the mehenDi group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.

A Subtree representing the transcripts covered by 
mehenDi selected node

ENST00000617047.1 

ENST00000618772.4 

ENST00000487146.6 

ENST00000602849.1 

ENST00000369784. 7 

• Terminus group • mehenDi selected node

0 
LO 
M 

Co 
::J 0 
OM 
(.) 

"'C 
Q.) 

cu 0 
� LO 

0 

C 

0 

B                     Terminus group 

condition 

□ 1

□ 2

1 2 3 4 5 6 1 2 3 4 5 6 

samples 

mehenDi selected node 

condition 

□ 1

□ 2

1 2 3 4 5 6 1 2 3 4 5 6 

samples 

12



Figure S8: Example of a mehenDi node that is not aggregated enough in Terminus for the BrSimNorm dataset. (A)

Subtree representing the transcripts covered by the mehenDi group. (B) Inferential replicates for the Terminus group. (C)

Inferential replicates for the selected node output by mehenDi.
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Figure S9: Examination of error metrics for the unique nodes obtained for treeclimbR when doing treeclimbR vs Txps

analysis at the different nominal FDR thresholds. We vary the magnitude of log fold change (LFC) and plot the empirical

FDR and the total number of nodes that are left after filtering the unique nodes based on LFC.
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Figure S10: Examination of error metrics for the unique nodes obtained for Txps when doing treeclimbR vs Txps analysis

at the different nominal FDR thresholds. We vary the magnitude of log fold change (LFC) and plot the empirical FDR

and the total number of nodes that are left after filtering the unique nodes based on LFC.
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Figure S11: The first two dimensions of the PCA using the top 1000 variable features for the MouseMuscle dataset
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Figure S12: The average distance between the nodes obtained for mehenDi using default parameters and varying minP

and mIrvThresh individually for the MouseMuscle dataset.
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Figure S14: Examining the transcript profile for the gene Hmcn2 in the MouseMuscle dataset. A) Transcripts in a pileup

style. B) Tree representing the transcripts covered by the gene Hmcn2, with the red node representing the transcripts

covered by the mehenDi selected node. C) Inferential replicates for the transcript ENSMUST00000138821.7, which had

the lowest p-value among all the transcripts in the tree. D) Inferential replicates for the mehenDi selected node.
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Figure S15: Examining the transcript profile for the gene Emid1 in the MouseMuscle dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene Emid1, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000151906.7, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S16: Examining the transcript profile for the gene Prss55 in the MouseMuscle dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene Prss55, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000171503.7, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S17: Examining the transcript profile for the gene Stard10 in the MouseMuscle dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene Stard10, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST000000032927.13, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S18: Examining the transcript profile for the gene Syk in the MouseMuscle dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene SYK, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000055087.6, which had

the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S19: UpSet plot covering the number of transcripts that are covered by the nodes that are output by the different

methods for the ChimpBrain dataset.
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Figure S20: Examining the transcript profile for the gene CABIN1 in the ChimpBrain dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene CABIN1, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000103768, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S21: Examining the transcript profile for the gene CATSPERG in the ChimpBrain dataset. (A) Transcripts in a

pileup style. (B) Tree representing the transcripts covered by the gene CATSPERG, with the red node representing the

transcripts covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000020240,

which had the lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected

node.
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Figure S22: Examining the transcript profile for the gene EYA1 in the ChimpBrain dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene EYA1, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000097751, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S23: Examining the transcript profile for the gene MCF2 in the ChimpBrain dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene MCF2, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000105901, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S24: Examining the transcript profile for the gene MYO5C in the ChimpBrain dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene MYO5C, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000013074, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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Figure S25: Examining the transcript profile for the gene PIEZO2 in the ChimpBrain dataset. (A) Transcripts in a pileup

style. (B) Tree representing the transcripts covered by the gene PIEZO2, with the red node representing the transcripts

covered by the mehenDi selected node. (C) Inferential replicates for the transcript ENSMUST00000094046, which had the

lowest p-value among all the transcripts in the tree. (D) Inferential replicates for the mehenDi selected node.
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