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Note 1. Validation of the rationality of the supervised evaluation strategy

To validate that our classification-based evaluation strategy is appropriate, we
performed classification using the principal components (PCs) derived from the
standard Seurat v4 workflow (Hao et al. 2021), which were originally used for
clustering, as input features. The resulting models exhibited high classification
performance (Supplemental Fig. S2), supporting the use of classification accuracy as a
meaningful proxy for evaluating the effectiveness of feature extraction. It also suggests
that more refined feature extraction, namely more precisely capturing biologically
relevant signals potentially reflective of gene program activity, may contribute to

improved cell identity identification.

On the other hand, we performed principal component analysis (PCA) on the gene
expression profiles from the simulated gene programs across three simulation tests. We
used the resulting principal components (PCs) as features to perform classification,
similar to the evaluation process of DeCEP and existing methods. Based on the elbow
plots, we determined that three was the optimal number of PCs for all three simulation
tests (Supplemental Fig. S3A). Across all three tests, the first three PCs consistently

demonstrated high performance in distinguishing cell identity (Supplemental Fig. S3B



and S3C). These findings suggest that the simulated gene programs successfully
introduced sufficient differential gene expression signals among cells within a specific

context.

Note 2. Evaluation of the various components within the DeCEP framework on
simulated data

Breaking down the various components of the DeCEP framework for performance
evaluation helps in thoroughly assessing the contribution of each component to the final,
context-specific gene program characterization at the cellular level. We conducted
additional analyses to further strengthen this evaluation. In the three simulated datasets,
we systematically remove components of the DeCEP framework to evaluate their
respective contributions to the performance metrics. We focused on two key factors: (1)
whether functional network construction was employed to derive gene weights based
on network topology, and (2) whether an imputation step was incorporated to enable
more precise microscopic dissection. In the condition without functional network
construction, we treated all genes within a specific simulated gene program equally.
This resulted in four groups: ‘w/ weight, w/ imputation,” ‘w/o weight, w/ imputation,’
‘w/ weight, w/o imputation,” and “w/o weight, w/o imputation.” The results showed that
most of the evaluation metrics yielded the highest scores in the ‘w/ weight, w/
imputation” group (Supplemental Fig. S6). This reflects the combined effects of
imputation and gene weighting on the characterization of context-specific gene
program activity at the cellular level. In particular, the weighted quantification of

context-specific gene programs, using weights derived from functional network



construction, generally performed better than unweighted quantification under both
imputation and non-imputation conditions. This finding also indirectly suggests the
potential accuracy and effectiveness of our function network construction and the

associated gene weights.

Note 3. Initial characterization of the normal liver tissue sSCRNA-seq dataset used
in this study

We focused on hepatocytes exhibiting high expression of the hepatocyte marker Alb
and clustered them into four clusters, labeled clusters 0 to 3 (Supplemental Fig. SBA
and S8B). Next, we performed differential expression analysis across these clusters,
revealing significant variability in the expression of marker genes associated with
zonation of the hepatic lobule. For example, Oat and Cyp2el, as marker genes of the
pericentral region, presented the highest expression levels in cluster 3 and the lowest
expression levels in cluster 2. Cyp2f2, as a marker gene of the periportal region,
exhibited expression levels following the order: cluster 2 > clusters 0 and 1 > cluster 3.
Hence, we rearranged the four clusters along the hepatic lobule axis based on these
expression patterns, where cluster 2 is in the periportal region, clusters 0 and 1 are in
the mid-lobule region, and cluster 3 is in the pericentral region (Supplemental Fig. S8A

and S8C).

Note 4. Evaluation of the various components within the DeCEP framework using
the normal liver tissue scRNA-seq dataset

We further assessed the contribution of each component within the DeCEP framework



to the final characterization of context-specific gene programs at the cellular level using
the normal liver tissue dataset and the strategy described in Supplemental Note 2.
Consistently, most evaluation metrics indicated that the ‘w/ weight, w/ imputation’

group exhibited improved performance relative to the others (Supplemental Fig. S11).

Note 5. Comparison between DeCEP and CoGAPS

We applied CoGAPS using the parameter settings outlined in the vignette
(https://www.bioconductor.org/packages/release/bioc/vignettes/CoGAPS/inst/doc/Co
GAPS.html) (Fertig et al. 2010). The number of patterns was set to 8 based on the
empirical settings outlined in the single-cell analysis section of the vignette, meaning
the expression matrix was factorized into 8 factors. As shown in Supplemental Fig.
S13A, the activity levels of these 8 patterns at the cellular level are directly visualized
in the UMAP plots. Since it was unclear which pattern specifically characterized liver
detoxification, we used the getPatternGeneSet function to perform gene set enrichment
analysis of the significant genes across all eight patterns. We focused on four gene sets,
including drug metabolism - cytochrome P450, metabolism of xenobiotics by
cytochrome, glutathione metabolism, and glutamate and glutamine metabolism, all of
which were consistent with those used in this study. We found that three of the four
gene sets were enriched in Pattern 7, suggesting that it was associated with liver
detoxification (Supplemental Fig. S13B). However, in contrast to the DeCEP scores for
liver detoxification-related gene programs, the activity levels of Pattern 7 did not
exhibit a significant gradient distribution along the hepatic lobule axis (Supplemental

Fig. S13A). Further annotation of Pattern 7, using the hallmark gene sets referenced in



the vignette, revealed that the most significantly enriched gene set was
HALLMARK_ XENOBIOTIC_METABOLISM (Supplemental Fig. S13C). This
finding supports our earlier conclusion that CoGAPS identified gene programs related
to liver detoxification in Pattern 7. However, the pattern also exhibited significant
enrichment for a variety of other functions. This complexity complicates the direct
characterization of liver detoxification and likely explains the absence of a gradient

distribution in Pattern 7 (Supplemental Fig. S13C).

Moreover, compared to traditional gene set scoring methods, matrix factorization-
based methods like CoGAPS offer the advantage of characterizing gene programs at
the gene level. We used the patternMarkers function to identify the marker genes for
Pattern 7 and their corresponding PatternScores. As outlined in the CoGPAS’s vignette,
lower PatternScores indicate a stronger association of the marker genes with Pattern 7.
Among the top 20 marker genes associated with Pattern 7 identified by CoGAPS, we
did not find genes significantly linked to liver detoxification (Supplemental Fig. S13D).
However, when we compared the context-dependent hub genes linked to the four
detoxification-related gene sets identified by our method with the marker genes of
Pattern 7, we found that the hub genes from three of the four programs exhibited varying
degrees of overlap with the marker genes of Pattern 7 (Supplemental Fig. S13E). The
exception was the glutamate and glutamine metabolism program, which aligned with
its lack of enrichment in Pattern 7. In other words, the marker genes for Pattern 7
identified by CoGAPS include detoxification-related genes, but their significance is

partially diminished by complex signals, causing them to appear in less prominent



positions. To further investigate this, we examined the ranking of these genes among
all marker genes for Pattern 7 and found that most of them were ranked well beyond
the top 20 (Supplemental Fig. S13E), which supports the inference that detoxification
signals are de-emphasized in this pattern. Additionally, compared to our method,
CoGAPS failed to identify Cypla2, a key gene encoding a detoxification enzyme
(Thorn et al. 2012). This suggests that the patterns identified by CoGAPS, which
involve the entanglement of multiple functional gene programs, were less effective at

pinpointing genes specifically related to individual gene programs.

Overall, these comparisons further highlight that our function-centric approach
allows for the direct and independent characterization of distinct functional gene
programs at both the gene and cellular levels, effectively disentangling them and

enhancing interpretability.

Note 6. Initial characterization of the Alzheimer’s disease ShARNA-seq dataset used
in this study

By applying DeCEP to a single-nucleus RNA sequencing (SnRNA-seq) dataset from
the hippocampus of AD and wild-type (WT) mice, we focused on astrocytes that
exhibited high expression levels of the astrocytic marker Slcla3 (Habib et al. 2020)
(Supplemental Fig. S16A). We distinguished between two conditions of astrocytes
based on Gfap expression levels, which represented high and low levels of NI, termed
NI-high and NI-low, respectively (Supplemental Fig. S16A and S16B). The NI-high

condition mainly existed in AD mice, whereas the NI-low condition was present in both



AD and WT mice (Supplemental Fig. S16C). We observed that the gene expression
levels of the cells under the two conditions were highly heterogeneous. For example,
cells in the NI-high condition exhibited relatively high expression levels of Vim, Gfap,
Serpina3n, Apoe, and Ctsb (Supplemental Fig. S16D), all of which are related to NI

(Pekny et al. 2016; Parhizkar and Holtzman 2022; Wu et al. 2023; Han et al. 2024).

Note 7. DeCEP identifies the spatially associated neuroinflammatory phenotype in
mouse brain tissue sections

Using the Allen brain atlas (Wang et al. 2020) as a reference, we assigned the spatial
domains derived from spatial clustering in the two tissue sections to six regions: the
cerebral cortex (CTX), cerebral nuclei (CNU), hippocampal formation (HPF), thalamus
(TH), hypothalamus (HY), and fiber tracts (Supplemental Fig. S19A-S19C). We used
chemokine signaling as a representative gene program to characterize the degree of NI
in each spot, showing that, compared with the WT tissue section, the AD tissue section
exhibited an increased number of spots with high DeCEP states and a decreased number
of spots with low DeCEP states (Supplemental Fig. S20A). The distribution of the
DeCEP states in these spots showed a significant spatial correlation, similar to the
expression of Gfap, a marker of astrocyte reactivity (Lawrence et al. 2023)
(Supplemental Fig. S20A and S20B). We quantified the proportions of different DeCEP
states in the six regions, showing that in the AD tissue section, the highest proportion
of spots exhibiting high DeCEP states was observed in the fiber tracts, followed by the
HPF, TH, and CTX. In contrast, for the WT tissue section, the proportion of spots with

high DeCEP states in these regions decreased compared with those in the AD section



(Supplemental Fig. S20C).

Based on our data, it appears that the HPF could be the initial brain area affected
by inflammation during the onset of AD. Through an in-depth analysis of gene
expression variances between spots with high and low DeCEP states within the HPF,
we found that inflammatory-related genes, such as the typical marker gene Gfap, were
prominently expressed in spots with high DeCEP states, whereas neural-related genes,
such as the typical marker gene Hpca, were notably expressed in spots with low DeCEP
states (Supplemental Fig. S20D-S20F). The spatial correlation of the expression pattern
suggests that inflammatory glial cells may progressively move toward and damage

neurons in the HPF during the onset of AD.

Additionally, we further employed DeCEP on a high-resolution Slide-seqV?2
dataset of the AD mouse hippocampus (Cable et al. 2022). The clustering results
showed that clusters 4, 5, and 8, enriched in granule and pyramidal cells, were
surrounded by clusters 3, 6, and 2, respectively (Supplemental Fig. S21A). We counted
the proportion of spots with a specific DeCEP state in different clusters, showing that
the proportion of mixed DeCEP states in clusters 3, 6, and 2 was relatively high
(Supplemental Fig. S21B), which suggests that AD, often triggered by chronic
inflammation, is characterized by persistent and weak interactions between glial cells
and neurons. To investigate whether certain factors may influence the mixed DeCEP
states in space, we assigned the region containing these spots as the ROI. Using the
“spatial” mode of DeCEP, we identified the ROI and its corresponding neighborhood

as the specific spatial context associated with the chronic inflammation phenotype. The



identification of a series of spatially dependent hub genes within this spatial context
suggests potential regulation of the ROI by the neighborhood (Supplemental Fig. S21C).
Vavz, in particular, has the highest gene weight in this spatial context (Supplemental
Fig. S21C), implying a possible interaction between amyloid-B (Ap) and glial cells
under the regulation of Vav2. Actually, a previous study showed that Vav2 can interact
with amyloid precursor protein (APP) and positively regulate APP’s protein level

(Zhang et al. 2022), thus confirming the potential of this inference.

Note 8. Initial characterization of the cSCC scRNA-seq dataset used in this study
These tumor keratinocytes exhibited high expression of KRT5, a marker associated with
basal tumors (Supplemental Fig. S22A). They were further clustered into 5 clusters,
labeled clusters 0 to 4 (Supplemental Fig. S22B). The high expression of KRT1, a
marker of terminal differentiation, in cluster O indicates that the cells in this cluster are
mainly differentiated. In contrast, the loss of KRT1 expression in cluster 1 suggests that
these cells are undergoing dedifferentiation. The presence of MMP10 expression in
cluster 4 indicates that the cells here are undergoing epithelial-mesenchymal transition
(EMT) (Garg 2022). Clusters 2 and 3 represent proliferative cell populations associated
with dedifferentiation and tumor progression, respectively, as indicated by their high

expression levels of MKI167 and TOP2A (Supplemental Fig. S22C).

Note 9. Comparison of clusters 2 and 5 as well as clusters 3, 8, and 9 in the ST data
of the human cSCC tissue section

We investigated the ten TME-related genes in Supplemental Fig. S26A, and as shown



in Supplemental Table S1, the overall differential expression significance of these ten
genes was significantly higher in clusters 2 and 5 compared to clusters 3, 8, and 9.
Further differential expression analysis comparing clusters 2 and 5 with clusters 3, 8,
and 9 confirmed that nine of the ten genes were expressed at notably higher levels in
clusters 2 and 5 (as detailed in the table below). These results indicate that clusters 2
and 5 exhibited a more active TME compared to clusters 3, 8, and 9, which aligns with
the finding that the spots with high DeCEP states of TGFB and Wnt signaling were
mainly enriched in clusters 2 and 5. While clusters 3, 8, and 9 displayed some degree
of TME activity, they had not yet reached a highly active state, resulting in fewer spots
with high DeCEP states within these clusters.

Clusters 2 and 5 vs. Clusters 3, 8, and 9

gene p_val avg_log2FC pct.1 pct.2 p_val_adj
ACTB 4.67E-14 0.496642953 1 1 1.56E-09
TNC 5.60E-19 1.094225125 0.985 0.711 1.87E-14
HLA-B 3.26E-08 0.346578144 1 1 0.001090115
HLA-A 1.25E-08 0.323408529 1 0.993 0.000418573
TMSB4X 3.70E-15 0.449690944 1 0.987 1.24E-10
TMSB10 1.09E-13 0.501921664 1 0.993 3.65E-09
MMP1 2.73E-13 1.143078161 0.956 0.698 9.11E-09
HLA-A 1.25E-08 0.323408529 1 0.993 0.000418573
SAT1 1.14E-08 0.460718699 0.985 0.899 0.00038152

Note 10. DeCEP enhances the characterization of spatially dependent gene
programs

DeCEP provides deeper biological insights than existing methods in ST data analysis.
Specifically, when applying DeCEP to adult mouse liver ST data, DeCEP successfully
reconstructed the nonuniform distribution of detoxification-related gene program

activity states along the liver lobule axis, which existing methods were unable to



achieve. This finding further validates the accuracy of anchoring DeCEP states derived
from scRNA-seq reference data to ST data in the DeCEP framework. Additionally, in
our application to the human cSCC tissue section, DeCEP was employed to identify the
ROIs associated with tumor invasion and their neighborhoods, highlighting its
capability to uncover biological insights within spatial contexts. We also quantified the
activity of cancer-related gene programs in these ROIs and their neighborhoods,
demonstrating the variability of DeCEP scores across spatial gradients. These insights

are difficult to obtain with existing methods.

Note 11. Further discussion on the limitations and prospects of this study

Characterizing gene programs from imaging-based ST data presents a significant
challenge, as current technologies can measure only a few hundred genes (Park et al.
2023). In future studies, we plan to explore the reference-free identification of spatially
dependent gene programs in sequencing-based ST data and establish a basis for
characterizing gene programs of imaging-based ST data through imputation and
gridding approaches. The current imputation methods can predict the expression of
undetected genes in imaging-based ST data (Wan et al. 2023; Li et al. 2024; Qiao and
Huang 2024), suggesting that incorporating such methods to characterize gene
programs in this type of data is potentially feasible. These efforts will enhance the
applicability and scalability of the DeCEP framework, enabling new biological insights

into the characterization of gene programs in spatial organization.

On the other hand, although DeCEP provides a direct and independent framework



for characterizing context-specific gene programs, its requirement for a priori
functional gene lists introduces an inherent constraint, as the analysis is restricted to the
genes within the selected gene lists. This approach implicitly assumes that all genes
associated with a given gene program are already included within the corresponding
gene list. While curated resources such as GO (Consortium 2019), KEGG (Kanehisa et
al. 2023), and MSigDB (Liberzon et al. 2015) offer comprehensive and high-quality
prior knowledge, it remains possible that currently unannotated genes play critical roles
in specific biological processes. Consequently, DeCEP may limit the discovery of novel
gene associations beyond the scope of predefined annotations. This limitation reflects
a broader, ongoing challenge in the field of gene program characterization. In the future,
we plan to use unsupervised strategies that take known genes as seed genes. By
applying clustering and propagation approaches, we would uncover previously
unrecognized genes potentially associated with specific gene programs, enabling

further investigation.

Note 12. Hierarchical design of parent-child node relationships within spatial
contexts of the DeCEP framework

In the “spatial” mode of the DeCEP framework, we designed constrained parent-child
node relationships tailored to spatial contexts, where the neighborhoods are treated as
parent nodes and the regions of interest (ROISs) as child nodes. Here, we mainly consider
that the ROIs are the regions of true interest to users, and this hierarchical design is
intended to capture the context-specific gene programs at the gene level that affect the

ROIs. In other words, our design aims to uncover the molecular factors that are



potentially associated with the functional phenotypes of the ROIs. If the parent-child
node relationships were reversed, it would suggest that the context-specific gene
programs captured at the gene level are related to the functional phenotypes of the
neighborhoods. While this approach is also feasible, it deviates from our original

intention in defining the ROIs.

Note 13. The supervised evaluation strategy and fairness principles

In the simulated data section, simulation tests 1-3 were each conducted to represent a
single cell type. DeCEP treated each simulated cell type as a specific cellular context.
Accordingly, DeCEP processed the expression matrix from each simulation as a unified
dataset, aligning with the analysis approach adopted by the five existing methods. The
classification labels were employed solely as ground truth references to assess the
ability of each method to identify similarities and differences among cells within a

specific context.
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