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Note 1. Validation of the rationality of the supervised evaluation strategy 

To validate that our classification-based evaluation strategy is appropriate, we 

performed classification using the principal components (PCs) derived from the 

standard Seurat v4 workflow (Hao et al. 2021), which were originally used for 

clustering, as input features. The resulting models exhibited high classification 

performance (Supplemental Fig. S2), supporting the use of classification accuracy as a 

meaningful proxy for evaluating the effectiveness of feature extraction. It also suggests 

that more refined feature extraction, namely more precisely capturing biologically 

relevant signals potentially reflective of gene program activity, may contribute to 

improved cell identity identification. 

On the other hand, we performed principal component analysis (PCA) on the gene 

expression profiles from the simulated gene programs across three simulation tests. We 

used the resulting principal components (PCs) as features to perform classification, 

similar to the evaluation process of DeCEP and existing methods. Based on the elbow 

plots, we determined that three was the optimal number of PCs for all three simulation 

tests (Supplemental Fig. S3A). Across all three tests, the first three PCs consistently 

demonstrated high performance in distinguishing cell identity (Supplemental Fig. S3B 



and S3C). These findings suggest that the simulated gene programs successfully 

introduced sufficient differential gene expression signals among cells within a specific 

context. 

Note 2. Evaluation of the various components within the DeCEP framework on 

simulated data 

Breaking down the various components of the DeCEP framework for performance 

evaluation helps in thoroughly assessing the contribution of each component to the final, 

context-specific gene program characterization at the cellular level. We conducted 

additional analyses to further strengthen this evaluation. In the three simulated datasets, 

we systematically remove components of the DeCEP framework to evaluate their 

respective contributions to the performance metrics. We focused on two key factors: (1) 

whether functional network construction was employed to derive gene weights based 

on network topology, and (2) whether an imputation step was incorporated to enable 

more precise microscopic dissection. In the condition without functional network 

construction, we treated all genes within a specific simulated gene program equally. 

This resulted in four groups: ‘w/ weight, w/ imputation,’ ‘w/o weight, w/ imputation,’ 

‘w/ weight, w/o imputation,’ and ‘w/o weight, w/o imputation.’ The results showed that 

most of the evaluation metrics yielded the highest scores in the ‘w/ weight, w/ 

imputation’ group (Supplemental Fig. S6). This reflects the combined effects of 

imputation and gene weighting on the characterization of context-specific gene 

program activity at the cellular level. In particular, the weighted quantification of 

context-specific gene programs, using weights derived from functional network 



construction, generally performed better than unweighted quantification under both 

imputation and non-imputation conditions. This finding also indirectly suggests the 

potential accuracy and effectiveness of our function network construction and the 

associated gene weights. 

Note 3. Initial characterization of the normal liver tissue scRNA-seq dataset used 

in this study 

We focused on hepatocytes exhibiting high expression of the hepatocyte marker Alb 

and clustered them into four clusters, labeled clusters 0 to 3 (Supplemental Fig. S8A 

and S8B). Next, we performed differential expression analysis across these clusters, 

revealing significant variability in the expression of marker genes associated with 

zonation of the hepatic lobule. For example, Oat and Cyp2e1, as marker genes of the 

pericentral region, presented the highest expression levels in cluster 3 and the lowest 

expression levels in cluster 2. Cyp2f2, as a marker gene of the periportal region, 

exhibited expression levels following the order: cluster 2 > clusters 0 and 1 > cluster 3. 

Hence, we rearranged the four clusters along the hepatic lobule axis based on these 

expression patterns, where cluster 2 is in the periportal region, clusters 0 and 1 are in 

the mid-lobule region, and cluster 3 is in the pericentral region (Supplemental Fig. S8A 

and S8C). 

Note 4. Evaluation of the various components within the DeCEP framework using 

the normal liver tissue scRNA-seq dataset 

We further assessed the contribution of each component within the DeCEP framework 



to the final characterization of context-specific gene programs at the cellular level using 

the normal liver tissue dataset and the strategy described in Supplemental Note 2. 

Consistently, most evaluation metrics indicated that the ‘w/ weight, w/ imputation’ 

group exhibited improved performance relative to the others (Supplemental Fig. S11). 

Note 5. Comparison between DeCEP and CoGAPS 

We applied CoGAPS using the parameter settings outlined in the vignette 

(https://www.bioconductor.org/packages/release/bioc/vignettes/CoGAPS/inst/doc/Co

GAPS.html) (Fertig et al. 2010). The number of patterns was set to 8 based on the 

empirical settings outlined in the single-cell analysis section of the vignette, meaning 

the expression matrix was factorized into 8 factors. As shown in Supplemental Fig. 

S13A, the activity levels of these 8 patterns at the cellular level are directly visualized 

in the UMAP plots. Since it was unclear which pattern specifically characterized liver 

detoxification, we used the getPatternGeneSet function to perform gene set enrichment 

analysis of the significant genes across all eight patterns. We focused on four gene sets, 

including drug metabolism - cytochrome P450, metabolism of xenobiotics by 

cytochrome, glutathione metabolism, and glutamate and glutamine metabolism, all of 

which were consistent with those used in this study. We found that three of the four 

gene sets were enriched in Pattern 7, suggesting that it was associated with liver 

detoxification (Supplemental Fig. S13B). However, in contrast to the DeCEP scores for 

liver detoxification-related gene programs, the activity levels of Pattern 7 did not 

exhibit a significant gradient distribution along the hepatic lobule axis (Supplemental 

Fig. S13A). Further annotation of Pattern 7, using the hallmark gene sets referenced in 



the vignette, revealed that the most significantly enriched gene set was 

HALLMARK_XENOBIOTIC_METABOLISM (Supplemental Fig. S13C). This 

finding supports our earlier conclusion that CoGAPS identified gene programs related 

to liver detoxification in Pattern 7. However, the pattern also exhibited significant 

enrichment for a variety of other functions. This complexity complicates the direct 

characterization of liver detoxification and likely explains the absence of a gradient 

distribution in Pattern 7 (Supplemental Fig. S13C). 

Moreover, compared to traditional gene set scoring methods, matrix factorization-

based methods like CoGAPS offer the advantage of characterizing gene programs at 

the gene level. We used the patternMarkers function to identify the marker genes for 

Pattern 7 and their corresponding PatternScores. As outlined in the CoGPAS’s vignette, 

lower PatternScores indicate a stronger association of the marker genes with Pattern 7. 

Among the top 20 marker genes associated with Pattern 7 identified by CoGAPS, we 

did not find genes significantly linked to liver detoxification (Supplemental Fig. S13D). 

However, when we compared the context-dependent hub genes linked to the four 

detoxification-related gene sets identified by our method with the marker genes of 

Pattern 7, we found that the hub genes from three of the four programs exhibited varying 

degrees of overlap with the marker genes of Pattern 7 (Supplemental Fig. S13E). The 

exception was the glutamate and glutamine metabolism program, which aligned with 

its lack of enrichment in Pattern 7. In other words, the marker genes for Pattern 7 

identified by CoGAPS include detoxification-related genes, but their significance is 

partially diminished by complex signals, causing them to appear in less prominent 



positions. To further investigate this, we examined the ranking of these genes among 

all marker genes for Pattern 7 and found that most of them were ranked well beyond 

the top 20 (Supplemental Fig. S13E), which supports the inference that detoxification 

signals are de-emphasized in this pattern. Additionally, compared to our method, 

CoGAPS failed to identify Cyp1a2, a key gene encoding a detoxification enzyme 

(Thorn et al. 2012). This suggests that the patterns identified by CoGAPS, which 

involve the entanglement of multiple functional gene programs, were less effective at 

pinpointing genes specifically related to individual gene programs. 

Overall, these comparisons further highlight that our function-centric approach 

allows for the direct and independent characterization of distinct functional gene 

programs at both the gene and cellular levels, effectively disentangling them and 

enhancing interpretability. 

Note 6. Initial characterization of the Alzheimer’s disease snRNA-seq dataset used 

in this study 

By applying DeCEP to a single-nucleus RNA sequencing (snRNA-seq) dataset from 

the hippocampus of AD and wild-type (WT) mice, we focused on astrocytes that 

exhibited high expression levels of the astrocytic marker Slc1a3 (Habib et al. 2020) 

(Supplemental Fig. S16A). We distinguished between two conditions of astrocytes 

based on Gfap expression levels, which represented high and low levels of NI, termed 

NI-high and NI-low, respectively (Supplemental Fig. S16A and S16B). The NI-high 

condition mainly existed in AD mice, whereas the NI-low condition was present in both 



AD and WT mice (Supplemental Fig. S16C). We observed that the gene expression 

levels of the cells under the two conditions were highly heterogeneous. For example, 

cells in the NI-high condition exhibited relatively high expression levels of Vim, Gfap, 

Serpina3n, Apoe, and Ctsb (Supplemental Fig. S16D), all of which are related to NI 

(Pekny et al. 2016; Parhizkar and Holtzman 2022; Wu et al. 2023; Han et al. 2024). 

Note 7. DeCEP identifies the spatially associated neuroinflammatory phenotype in 

mouse brain tissue sections 

Using the Allen brain atlas (Wang et al. 2020) as a reference, we assigned the spatial 

domains derived from spatial clustering in the two tissue sections to six regions: the 

cerebral cortex (CTX), cerebral nuclei (CNU), hippocampal formation (HPF), thalamus 

(TH), hypothalamus (HY), and fiber tracts (Supplemental Fig. S19A-S19C). We used 

chemokine signaling as a representative gene program to characterize the degree of NI 

in each spot, showing that, compared with the WT tissue section, the AD tissue section 

exhibited an increased number of spots with high DeCEP states and a decreased number 

of spots with low DeCEP states (Supplemental Fig. S20A). The distribution of the 

DeCEP states in these spots showed a significant spatial correlation, similar to the 

expression of Gfap, a marker of astrocyte reactivity (Lawrence et al. 2023) 

(Supplemental Fig. S20A and S20B). We quantified the proportions of different DeCEP 

states in the six regions, showing that in the AD tissue section, the highest proportion 

of spots exhibiting high DeCEP states was observed in the fiber tracts, followed by the 

HPF, TH, and CTX. In contrast, for the WT tissue section, the proportion of spots with 

high DeCEP states in these regions decreased compared with those in the AD section 



(Supplemental Fig. S20C). 

Based on our data, it appears that the HPF could be the initial brain area affected 

by inflammation during the onset of AD. Through an in-depth analysis of gene 

expression variances between spots with high and low DeCEP states within the HPF, 

we found that inflammatory-related genes, such as the typical marker gene Gfap, were 

prominently expressed in spots with high DeCEP states, whereas neural-related genes, 

such as the typical marker gene Hpca, were notably expressed in spots with low DeCEP 

states (Supplemental Fig. S20D-S20F). The spatial correlation of the expression pattern 

suggests that inflammatory glial cells may progressively move toward and damage 

neurons in the HPF during the onset of AD. 

Additionally, we further employed DeCEP on a high-resolution Slide-seqV2 

dataset of the AD mouse hippocampus (Cable et al. 2022). The clustering results 

showed that clusters 4, 5, and 8, enriched in granule and pyramidal cells, were 

surrounded by clusters 3, 6, and 2, respectively (Supplemental Fig. S21A). We counted 

the proportion of spots with a specific DeCEP state in different clusters, showing that 

the proportion of mixed DeCEP states in clusters 3, 6, and 2 was relatively high 

(Supplemental Fig. S21B), which suggests that AD, often triggered by chronic 

inflammation, is characterized by persistent and weak interactions between glial cells 

and neurons. To investigate whether certain factors may influence the mixed DeCEP 

states in space, we assigned the region containing these spots as the ROI. Using the 

“spatial” mode of DeCEP, we identified the ROI and its corresponding neighborhood 

as the specific spatial context associated with the chronic inflammation phenotype. The 



identification of a series of spatially dependent hub genes within this spatial context 

suggests potential regulation of the ROI by the neighborhood (Supplemental Fig. S21C). 

Vav2, in particular, has the highest gene weight in this spatial context (Supplemental 

Fig. S21C), implying a possible interaction between amyloid-β (Aβ) and glial cells 

under the regulation of Vav2. Actually, a previous study showed that Vav2 can interact 

with amyloid precursor protein (APP) and positively regulate APP’s protein level 

(Zhang et al. 2022), thus confirming the potential of this inference. 

Note 8. Initial characterization of the cSCC scRNA-seq dataset used in this study 

These tumor keratinocytes exhibited high expression of KRT5, a marker associated with 

basal tumors (Supplemental Fig. S22A). They were further clustered into 5 clusters, 

labeled clusters 0 to 4 (Supplemental Fig. S22B). The high expression of KRT1, a 

marker of terminal differentiation, in cluster 0 indicates that the cells in this cluster are 

mainly differentiated. In contrast, the loss of KRT1 expression in cluster 1 suggests that 

these cells are undergoing dedifferentiation. The presence of MMP10 expression in 

cluster 4 indicates that the cells here are undergoing epithelial-mesenchymal transition 

(EMT) (Garg 2022). Clusters 2 and 3 represent proliferative cell populations associated 

with dedifferentiation and tumor progression, respectively, as indicated by their high 

expression levels of MKI67 and TOP2A (Supplemental Fig. S22C). 

Note 9. Comparison of clusters 2 and 5 as well as clusters 3, 8, and 9 in the ST data 

of the human cSCC tissue section 

We investigated the ten TME-related genes in Supplemental Fig. S26A, and as shown 



in Supplemental Table S1, the overall differential expression significance of these ten 

genes was significantly higher in clusters 2 and 5 compared to clusters 3, 8, and 9. 

Further differential expression analysis comparing clusters 2 and 5 with clusters 3, 8, 

and 9 confirmed that nine of the ten genes were expressed at notably higher levels in 

clusters 2 and 5 (as detailed in the table below). These results indicate that clusters 2 

and 5 exhibited a more active TME compared to clusters 3, 8, and 9, which aligns with 

the finding that the spots with high DeCEP states of TGFB and Wnt signaling were 

mainly enriched in clusters 2 and 5. While clusters 3, 8, and 9 displayed some degree 

of TME activity, they had not yet reached a highly active state, resulting in fewer spots 

with high DeCEP states within these clusters. 

Clusters 2 and 5 vs. Clusters 3, 8, and 9 
gene p_val avg_log2FC pct.1 pct.2 p_val_adj 

ACTB 4.67E-14 0.496642953 1 1 1.56E-09 
TNC 5.60E-19 1.094225125 0.985 0.711 1.87E-14 

HLA-B 3.26E-08 0.346578144 1 1 0.001090115 
HLA-A 1.25E-08 0.323408529 1 0.993 0.000418573 

TMSB4X 3.70E-15 0.449690944 1 0.987 1.24E-10 
TMSB10 1.09E-13 0.501921664 1 0.993 3.65E-09 
MMP1 2.73E-13 1.143078161 0.956 0.698 9.11E-09 
HLA-A 1.25E-08 0.323408529 1 0.993 0.000418573 
SAT1 1.14E-08 0.460718699 0.985 0.899 0.00038152 

Note 10. DeCEP enhances the characterization of spatially dependent gene 

programs 

DeCEP provides deeper biological insights than existing methods in ST data analysis. 

Specifically, when applying DeCEP to adult mouse liver ST data, DeCEP successfully 

reconstructed the nonuniform distribution of detoxification-related gene program 

activity states along the liver lobule axis, which existing methods were unable to 



achieve. This finding further validates the accuracy of anchoring DeCEP states derived 

from scRNA-seq reference data to ST data in the DeCEP framework. Additionally, in 

our application to the human cSCC tissue section, DeCEP was employed to identify the 

ROIs associated with tumor invasion and their neighborhoods, highlighting its 

capability to uncover biological insights within spatial contexts. We also quantified the 

activity of cancer-related gene programs in these ROIs and their neighborhoods, 

demonstrating the variability of DeCEP scores across spatial gradients. These insights 

are difficult to obtain with existing methods. 

Note 11. Further discussion on the limitations and prospects of this study 

Characterizing gene programs from imaging-based ST data presents a significant 

challenge, as current technologies can measure only a few hundred genes (Park et al. 

2023). In future studies, we plan to explore the reference-free identification of spatially 

dependent gene programs in sequencing-based ST data and establish a basis for 

characterizing gene programs of imaging-based ST data through imputation and 

gridding approaches. The current imputation methods can predict the expression of 

undetected genes in imaging-based ST data (Wan et al. 2023; Li et al. 2024; Qiao and 

Huang 2024), suggesting that incorporating such methods to characterize gene 

programs in this type of data is potentially feasible. These efforts will enhance the 

applicability and scalability of the DeCEP framework, enabling new biological insights 

into the characterization of gene programs in spatial organization. 

On the other hand, although DeCEP provides a direct and independent framework 



for characterizing context-specific gene programs, its requirement for a priori 

functional gene lists introduces an inherent constraint, as the analysis is restricted to the 

genes within the selected gene lists. This approach implicitly assumes that all genes 

associated with a given gene program are already included within the corresponding 

gene list. While curated resources such as GO (Consortium 2019), KEGG (Kanehisa et 

al. 2023), and MSigDB (Liberzon et al. 2015) offer comprehensive and high-quality 

prior knowledge, it remains possible that currently unannotated genes play critical roles 

in specific biological processes. Consequently, DeCEP may limit the discovery of novel 

gene associations beyond the scope of predefined annotations. This limitation reflects 

a broader, ongoing challenge in the field of gene program characterization. In the future, 

we plan to use unsupervised strategies that take known genes as seed genes. By 

applying clustering and propagation approaches, we would uncover previously 

unrecognized genes potentially associated with specific gene programs, enabling 

further investigation. 

Note 12. Hierarchical design of parent-child node relationships within spatial 

contexts of the DeCEP framework 

In the “spatial” mode of the DeCEP framework, we designed constrained parent-child 

node relationships tailored to spatial contexts, where the neighborhoods are treated as 

parent nodes and the regions of interest (ROIs) as child nodes. Here, we mainly consider 

that the ROIs are the regions of true interest to users, and this hierarchical design is 

intended to capture the context-specific gene programs at the gene level that affect the 

ROIs. In other words, our design aims to uncover the molecular factors that are 



potentially associated with the functional phenotypes of the ROIs. If the parent-child 

node relationships were reversed, it would suggest that the context-specific gene 

programs captured at the gene level are related to the functional phenotypes of the 

neighborhoods. While this approach is also feasible, it deviates from our original 

intention in defining the ROIs. 

Note 13. The supervised evaluation strategy and fairness principles 

In the simulated data section, simulation tests 1-3 were each conducted to represent a 

single cell type. DeCEP treated each simulated cell type as a specific cellular context. 

Accordingly, DeCEP processed the expression matrix from each simulation as a unified 

dataset, aligning with the analysis approach adopted by the five existing methods. The 

classification labels were employed solely as ground truth references to assess the 

ability of each method to identify similarities and differences among cells within a 

specific context. 
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