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Details of simulation 

To benchmark the “discrete” mode of DeCEP, we simulated a single-cell gene 

expression matrix containing 1,000 cells and 20,000 genes at a time and set the 

de.facLoc parameter with gradients. To benchmark the “continuous” mode of DeCEP, 

we lowered the number of cells per simulation to 500, set the path.nSteps parameter to 

50, and adjusted the de.facLoc parameter with gradients accordingly. Additionally, for 

both simulation modes, we set the de.prob parameter to 0.2. Here, the de.facLoc 

parameter represents the differential expression factor, which determines the extent of 

gene expression differences among simulated cells. The path.nSteps parameter 

establishes continuous cell steps and governs the smoothness of cell dynamic changes 

in the simulation. The de.prob parameter controls the probability that a gene is selected 

for differential expression, thus influencing the diversity of gene expression profiles 

across simulated cells. 

We performed consensus clustering (Wilkerson and Hayes 2010) on the 1000 

highly variable genes in the simulated gene expression matrix, setting the output to 10 

clusters. We assumed that each cluster corresponds to a unique gene program, where 

genes are clustered together due to potential transcriptional co-regulation. The 



collection of highly variable genes within each cluster thus represents a functional gene 

list. We evaluated the performance of different methods in characterizing 10 gene 

programs in each dataset. 

Details of existing methods employed for benchmarking 

Seurat. The R package Seurat (v4.3.0) was employed to calculate gene program activity 

scores. We executed Seurat using the AddModuleScore function, with all the parameters 

set to their default values. 

AUCell. The R package AUCell (v1.20.2) was used to calculate gene program activity 

scores. We first applied the AUCell_buildRankings function, setting the parameter 

splitByBlocks to TRUE while keeping the other parameters at their default values. We 

subsequently executed the AUCell_calcAUC function using the default settings. 

VISION. The R package VISION (v3.0.1) was used to calculate gene program activity 

scores. We sequentially executed the Vision function and the analyze function, using 

the default parameter settings for both. 

VAM. The R package VAM (v1.0.0) was employed to calculate gene program activity 

scores. We used the vamForSeurat function, maintaining its default parameters. 

UCell. The R package UCell (v2.0.1) was used to calculate gene program activity 

scores. We applied the AddModuleScore_UCell function with its default values. 

Details of evaluation metrics 

To evaluate the performance of the “discrete” mode of DeCEP, we first performed 

unsupervised clustering on the simulated datasets using the standard Seurat v4 



workflow. Next, we used simulated gene programs as features and assigned cell clusters 

identified by the workflow with a resolution parameter of 0.6 as classification labels. 

We applied the k-nearest neighbors (kNN) algorithm with k = 7 to build kNN classifiers, 

using 10-fold cross-validation to predict the classification labels. The kNN classifier 

calculates the Euclidean distance between training and test samples and classifies test 

samples based on the majority label of their nearest neighbors. In this way, we assessed 

the effectiveness of activity scores for gene programs calculated by different methods 

in distinguishing cell clusters. We calculated the accuracy, sensitivity, specificity, F1 

score, and AUC as our measures of the effectiveness of different methods to 

characterize gene programs. To eliminate the influence of predefined classification 

labels in the supervised evaluation, we performed an unsupervised assessment for each 

method. We used simulated gene programs as features for k-means clustering. The 

number of clusters for k-means clustering was fixed at two (i.e., k = 2). This binary 

clustering strategy provides a simplified and reasonable scheme for evaluating the 

effectiveness of gene program activity scores to cluster and separate cells. By fixing k 

= 2, we ensured a controlled evaluation strategy that allowed a fair comparison between 

DeCEP and existing methods in terms of their separation-and-clustering capability, 

thereby eliminating potential confounders introduced by the estimation of the number 

of clusters. For each simulated dataset, we calculated the silhouette coefficient (SC) for 

each cell and reported the mean SC value. 

To evaluate the performance of DeCEP in its “continuous” mode, we used 

generalized additive models (GAMs) to fit the simulated cell steps on the gene program 



activity scores and reported the goodness of fit. Specifically, we used the simulated cell 

steps as the response variable and the gene program activity scores as the explanatory 

variables to construct the nonparametric regression model. Here, the goodness of fit 

refers to the degree of closeness between the model’s predicted values and the actual 

response variable. We employed the adjusted R-squared as our measure of the goodness 

of fit. We performed the fitting using the R package mgcv (v1.8-42), selected splines as 

the basis function with the parameter bs = tp, and set the smoothing parameter method 

= REML. 

Collection of datasets and functional gene lists 

The adult mouse liver scRNA-seq and ST data were downloaded from the Gene 

Expression Omnibus (GEO) with accession numbers GSE171993 and GSE192742. The 

scRNA-seq data for the hippocampus of AD and WT mice was downloaded from 

GSE143758, and the corresponding ST data from 10x Visium and Slide-seqV2 

platforms were downloaded from GSE174321 and 

https://singlecell.broadinstitute.org/single_cell/study/SCP1663, respectively. The 

human cSCC scRNA-seq and ST data were downloaded from GSE144240. The 

functional gene lists used in this study were downloaded from the KEGG (Kanehisa et 

al. 2023) (https://www.genome.jp/kegg/pathway.html), WikiPathways (Agrawal et al. 

2024) (https://www.wikipathways.org/), and Reactome (Milacic et al. 2024) 

(https://reactome.org/) databases. 

Clustering 



We performed unsupervised clustering of scRNA-seq data using the standard Seurat v4 

(Hao et al. 2021) workflow, which employs a graph-based clustering approach. The 

identification of spatial domains from ST data was performed with STAGATE (Dong 

and Zhang 2022). 

Trajectory inference 

We reconstructed single-cell trajectories to generate pseudotime or pseudo-space for 

each cell using Monocle 2 (Qiu et al. 2017). 

Cell-cell communication inference 

We employed CellChat (Jin et al. 2021) to perform cell-cell communication inference, 

analysis, and visualization. 

Differential expression and functional enrichment analysis 

We used the Wilcoxon Rank Sum test to identify differentially expressed genes among 

cell populations or spatial domains implemented by the Seurat package (Hao et al. 2021) 

with a false discovery rate (FDR) less than 0.05. The functional enrichment of these 

genes was performed by clusterProfiler (Wu et al. 2021). 



References 

Agrawal A, Balcı H, Hanspers K, Coort SL, Martens M, Slenter DN, Ehrhart F, Digles D, Waagmeester A, 
Wassink I et al. 2024. WikiPathways 2024: next generation pathway database. Nucleic Acids 
Res 52: D679-d689. 

Dong K, Zhang S. 2022. Deciphering spatial domains from spatially resolved transcriptomics with an 
adaptive graph attention auto-encoder. Nat Commun 13: 1739. 

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M 
et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184: 3573-3587 e3529. 

Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. 2021. 
Inference and analysis of cell-cell communication using CellChat. Nat Commun 12: 1088. 

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023. KEGG for taxonomy-based 
analysis of pathways and genomes. Nucleic Acids Res 51: D587-d592. 

Milacic M, Beavers D, Conley P, Gong C, Gillespie M, Griss J, Haw R, Jassal B, Matthews L, May B et al. 
2024. The Reactome Pathway Knowledgebase 2024. Nucleic Acids Res 52: D672-d678. 

Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. 2017. Reversed graph embedding resolves 
complex single-cell trajectories. Nat Methods 14: 979-982. 

Wilkerson MD, Hayes DN. 2010. ConsensusClusterPlus: a class discovery tool with confidence 
assessments and item tracking. Bioinformatics 26: 1572-1573. 

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L et al. 2021. clusterProfiler 4.0: A 
universal enrichment tool for interpreting omics data. Innovation (Camb) 2: 100141. 

 


