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Details of simulation

To benchmark the “discrete” mode of DeCEP, we simulated a single-cell gene
expression matrix containing 1,000 cells and 20,000 genes at a time and set the
de.facLoc parameter with gradients. To benchmark the *“continuous” mode of DeCEP,
we lowered the number of cells per simulation to 500, set the path.nSteps parameter to
50, and adjusted the de.facLoc parameter with gradients accordingly. Additionally, for
both simulation modes, we set the de.prob parameter to 0.2. Here, the de.facLoc
parameter represents the differential expression factor, which determines the extent of
gene expression differences among simulated cells. The path.nSteps parameter
establishes continuous cell steps and governs the smoothness of cell dynamic changes
in the simulation. The de.prob parameter controls the probability that a gene is selected
for differential expression, thus influencing the diversity of gene expression profiles

across simulated cells.

We performed consensus clustering (Wilkerson and Hayes 2010) on the 1000
highly variable genes in the simulated gene expression matrix, setting the output to 10
clusters. We assumed that each cluster corresponds to a unique gene program, where

genes are clustered together due to potential transcriptional co-regulation. The



collection of highly variable genes within each cluster thus represents a functional gene
list. We evaluated the performance of different methods in characterizing 10 gene

programs in each dataset.

Details of existing methods employed for benchmarking

Seurat. The R package Seurat (v4.3.0) was employed to calculate gene program activity
scores. We executed Seurat using the AddModuleScore function, with all the parameters
set to their default values.

AUCell. The R package AUCell (v1.20.2) was used to calculate gene program activity
scores. We first applied the AUCell_buildRankings function, setting the parameter
splitByBlocks to TRUE while keeping the other parameters at their default values. We
subsequently executed the AUCell_calcAUC function using the default settings.
VISION. The R package VISION (v3.0.1) was used to calculate gene program activity
scores. We sequentially executed the Vision function and the analyze function, using
the default parameter settings for both.

VAM. The R package VAM (v1.0.0) was employed to calculate gene program activity
scores. We used the vamForSeurat function, maintaining its default parameters.

UCell. The R package UCell (v2.0.1) was used to calculate gene program activity

scores. We applied the AddModuleScore_UCell function with its default values.

Details of evaluation metrics
To evaluate the performance of the “discrete” mode of DeCEP, we first performed

unsupervised clustering on the simulated datasets using the standard Seurat v4



workflow. Next, we used simulated gene programs as features and assigned cell clusters
identified by the workflow with a resolution parameter of 0.6 as classification labels.
We applied the k-nearest neighbors (kNN) algorithm with k = 7 to build KNN classifiers,
using 10-fold cross-validation to predict the classification labels. The kNN classifier
calculates the Euclidean distance between training and test samples and classifies test
samples based on the majority label of their nearest neighbors. In this way, we assessed
the effectiveness of activity scores for gene programs calculated by different methods
in distinguishing cell clusters. We calculated the accuracy, sensitivity, specificity, F1
score, and AUC as our measures of the effectiveness of different methods to
characterize gene programs. To eliminate the influence of predefined classification
labels in the supervised evaluation, we performed an unsupervised assessment for each
method. We used simulated gene programs as features for k-means clustering. The
number of clusters for k-means clustering was fixed at two (i.e., k = 2). This binary
clustering strategy provides a simplified and reasonable scheme for evaluating the
effectiveness of gene program activity scores to cluster and separate cells. By fixing k
=2, we ensured a controlled evaluation strategy that allowed a fair comparison between
DeCEP and existing methods in terms of their separation-and-clustering capability,
thereby eliminating potential confounders introduced by the estimation of the number
of clusters. For each simulated dataset, we calculated the silhouette coefficient (SC) for

each cell and reported the mean SC value.

To evaluate the performance of DeCEP in its “continuous” mode, we used

generalized additive models (GAMS) to fit the simulated cell steps on the gene program



activity scores and reported the goodness of fit. Specifically, we used the simulated cell
steps as the response variable and the gene program activity scores as the explanatory
variables to construct the nonparametric regression model. Here, the goodness of fit
refers to the degree of closeness between the model’s predicted values and the actual
response variable. We employed the adjusted R-squared as our measure of the goodness
of fit. We performed the fitting using the R package mgcv (v1.8-42), selected splines as
the basis function with the parameter bs = tp, and set the smoothing parameter method

= REML.

Collection of datasets and functional gene lists

The adult mouse liver scRNA-seq and ST data were downloaded from the Gene
Expression Omnibus (GEO) with accession numbers GSE171993 and GSE192742. The
scRNA-seq data for the hippocampus of AD and WT mice was downloaded from
GSE143758, and the corresponding ST data from 10x Visium and Slide-seqV2
platforms were downloaded from GSE174321 and
https://singlecell.broadinstitute.org/single_cell/study/SCP1663,  respectively. The
human cSCC scRNA-seq and ST data were downloaded from GSE144240. The
functional gene lists used in this study were downloaded from the KEGG (Kanehisa et
al. 2023) (https://www.genome.jp/kegg/pathway.html), WikiPathways (Agrawal et al.
2024) (https://lwww.wikipathways.org/), and Reactome (Milacic et al. 2024)

(https://reactome.org/) databases.

Clustering



We performed unsupervised clustering of ScRNA-seq data using the standard Seurat v4
(Hao et al. 2021) workflow, which employs a graph-based clustering approach. The
identification of spatial domains from ST data was performed with STAGATE (Dong

and Zhang 2022).

Trajectory inference
We reconstructed single-cell trajectories to generate pseudotime or pseudo-space for

each cell using Monocle 2 (Qiu et al. 2017).

Cell-cell communication inference
We employed CellChat (Jin et al. 2021) to perform cell-cell communication inference,

analysis, and visualization.

Differential expression and functional enrichment analysis

We used the Wilcoxon Rank Sum test to identify differentially expressed genes among
cell populations or spatial domains implemented by the Seurat package (Hao et al. 2021)
with a false discovery rate (FDR) less than 0.05. The functional enrichment of these

genes was performed by clusterProfiler (Wu et al. 2021).
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