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Supplemental Figure S1. Distribution of cell fraction of mutations in individual clones. Each bar represents the cell fraction of SNVs, indicating the
proportion of cells wihin a clone that possess the mutation.
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Supplemental Figure S2. Variant allele frequencies (VAFs) against reference APOBEC sequence in each clonal organoid line. (A) hGOia3a and
endogenous copies, except for one missense mutation (Chr22:39,378,474) in A3B



A hGOia3A B hGOia3s

= 6000 Z 6000 E
= =
5T 8T
Q 3 4000- S @ 4000-
m c m c
] .g o .% ==
< 3 %3
8 2000+ 8 2000+
e S
[0} (0]
0,_|Z||:||:I|:| D 0 LI
O N < © [e] O N < © © [ce]
- N M < < ~ N ™M <
0.1pg/ml 3ug/ml 0.1pg/ml 3ug/ml
Dox treatment condition Dox treatment condition

Supplemental Figure S3. Expression levels of A3A or A3B in the corresponding organoid lines under doxycycline treatment. (A) Expression levels
of APOBECS3A (A3A) in hGOiasa line following under each doxycycline condition (n=3 per condition). (B) Expression levels of APOBEC3B (A3B) in hGOia3s
line following under each doxycycline condition (n=3 per condition). Data are presented as mean + 95% confidence intervals.
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Supplemental Figure S4. Cumulative proportions of expression levels of A3A and A3B in single cancer cells across multiple types of cancer.
Green line: average expression levels of A3A and A3B following 0.1 pg/ml doxycycline treatment for 48 hours in each corresponding line, hGOia3a and

hGOiasB, respectively; dark green line: average expression levels of A3A and A3B following 3 pg/ml doxycycline treatment for 48 hours in each correspond-

ing line, hGOia3a and hGOia3B, respectively.
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Supplemental Figure S5. High resolution images of immunohistochemistry. (A) hGOia3a and (B) hGOia3B lines. Scale bars represent 10 um.
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Supplemental Figure S6. Distribution of distances from the start position of paired reads to each single nucleotide variant (SNV) in BotSeqS. (A)
hGOiasa and (B) hGOiass lines. The 0-position is the 5’ head region of each DNA fragment.
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Supplemental Figure S7. Characteristics of APOBEC-associated C>U RNA editing sites in the hGOia3A and hGOias3B lines. (A) Correlation between
the total number of mapped bases and the number of C>U RNA editing in A3B_1st_C5_48h_100ng_bat1-1 sample. (B) Proportions of recurrent C>U RNA
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showing the total number of C>U RNA editing sites in each models. (D) Venn diagram showing the number of recurrent C>U RNA editing sites. (E) Venn

diagram showing the number of recurrent C>U RNA editing sites depending on the doxycycline treatment condition. (F) Venn diagram showing the number
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Supplemental Figure S8. De novo extracted RNA editing signatures in the hGOia3a and hGOia3B lines. (A) Spectra of de novo extracted RNA editing
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Supplemental Figure S9. Spectra of C>U RNA editing in pentanucleotide contexts from the hGOia3A and hGOia3s lines following 3pug/ml doxycy-

cline treatment for 48 hours.
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Supplemental Figure S11. Differentially expressed genes contributing DNA repair in the hGOia3a and TP53K0O-hGOia3A lines following 3ug/ml
doxycycline treatment for 48 hours. The numbers in the Venn diagram represent the number of differentially expressed genes belonging to each
comparison group.
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Supplemental Figure S13. Enrichment with SBS5- and SBS40-associated mutations detected from the hGOia3A clones following doxycycline
treatment. (A) Enrichment with epigenetic markers. (B) Enrichment with H3K27me3, replication timing and gene expression levels.
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Supplemental Methods

Human stomach organoid culture medium

Composition of stomach organoid culture medium was adopted from previous research with
minimal modification. The complete medium was composed of Wnt3A conditioned medium,
R-spondin-1 conditioned medium, Advanced DMEM/F-12 (Gibco, Cat N0.12634028),
HEPES (1M; Gibco, Cat N0.15630-080), Penicillin/streptomycin (10,000 U/mL; Gibco, Cat
N0.15140122), GlutaMax (Gibco, Cat N0.35050061), Human EGF Recombinant Protein
(Invitrogen, Cat No.PHG0311), hNoggin (Peprotech, Cat No.120-10C), hFGF10 (Peprotech,
Cat N0.3100-26), B27 supplement (50x) serum free (Gibco, Cat N0.17504044), N-
acetylcysteine (Sigma-Aldrich, Cat N0.A9165), Gastrin (Sigma-Aldrich, Cat N0.G9145),
Y27632 (Sigma-Aldrich, Cat No.Y0503), TGF-b R kinase inhibitor IV (Biogems, Cat

N0.3014193; Supplemental Table S11).

Passaging organoid

The medium in each well was replaced with Cell Recovery Solution (Corning, Cat
No0.354253), and the plates were incubated for 40~60 minutes at 4°C to dissolve the
Matrigel. The organoid pellet was isolated by removing the supernatant after centrifugation
at 300g for 5 minutes at 4°C. Organoids were then incubated for 5 minutes at 37°C with
Accutase (Stemcell Technology, Cat N0.07922), followed by pipetting 10-20 times to
dissociate them into clusters of 10-15 cells. After diluting the Accutase by adding 1 mL of
ADF medium (Gibco), the cell suspension was centrifuged at 300g for 5 minutes at 4°C to
isolate the pellet. Organoids were then seeded in 12- or 24-well plates at a ratio of 1:4 to 1.6

in Matrigel.

Construction of doxycycline inducible APOBEC overexpression vector



To create pPB-CMVmin-APOBEC (A3A or A3B)-IRES-mCherry vectors, APOBEC
constructs were designed following these steps. NCBI reference sequences for APOBEC3A
(NM_145699.4) and APOBEC3B (NM_004900.4) were utilized for the design. A Kozak
consensus sequences (GCCACC) was added at the 5’ end of each A3A or A3B cDNA
sequence, and an HA tag sequences (5’-TAC-CCA-TAC-GAT-GTT-CCA-GAT-TAC-GCT-3)
was appended to the 3’ ends. Subsequently, Xhol and Notl restriction enzyme cut sites
(CTCGAG and GCGGCCGC, respectively) were added to the 5" and 3’ ends of the
construct. De novo gene synthesis from GenScript (Piscataway, NJ) was used for the
synthesis of the two constructs. Following synthesis, the A3A and A3B constructs were
cloned into the pPB-CMVmin-TRE-IRES-mCherry backbone vector (Lee et al. 2022) to make
pPB-CMVmin-TRE-APOBEC (A3A or A3B)-IRES-mCherry expression cassettes. Plasmid
preparation, including both mini-prep and maxi-prep, was performed using commercial
competent cells (Biosearch Technologies, Cat N0.60106-1) and mini-prep kit (QIAGEN, Cat
N0.27104) and maxi-prep kit (QIAGEN, Cat No.12123) according to the manufacturers’

protocols.

Transfection of organoids

Organoids were dissociated using the same protocol employed for routine passaging.
Previously established protocols were utilized for the transfection (Gaebler et al. 2020; Fujii
et al. 2015). A combination of three plasmids were used for electroportation: (1) TRE-
APOBEC (A3A or A3B)-IRES-mCherry cassette and (2) CMV-rtTA-HygR cassette (3)

piggyBac transposase cassette.

For hGOiaza lines, organoids were suspended in 90ul of Opti-MEM (Gibco, Cat
N0.31985062), and mixed with about 30 pg of each vector. Electroporation programs were
adopted from the previous literature (Supplemental Table S11; Fuijii et al. 2015).
Transfected organoids were cultured for seven days with the medium composition described

in the established protocol. Organoids were incubated with the medium containing 1 pg/ml
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hygromycin (InvivoGen, Cat No.ant-hg-1) for seven days after splitting. To isolate the
transfected organoids having insertions of two vector cassettes for conditional
overexpression, organoids were incubated with doxycycline (Sigma-Aldrich., Cat No.D9891-
1G) in a 3 pug/ml containing medium for 12-16 hours. mCherry-positive organoids were
manually isolated by pipetting under a fluorescent microscope, and single-cell cloning was
conducted according to a previously reported method by using FACSAria Il (BD
Biosciences) and manually picking single cell originated organoids by pipetting (Youk et al.
2021). Isolated organoids were dissociated in the same way to passage. Then, organoids
were then filtered through a 40 ym strainer (Falcon, Cat No.352340). Using FACSDiva
software, pure single cells were isolated. After seeding the organoids, the single-cell-
originated organoids were isolated. For hGOiazzs lines, organoids were suspended in 100 pl of
BTXpress buffer (BTX), and 10 pg of vector mixtures were mixed. The following steps were
carried out in the reported protocol (Fuijii et al. 2015). Selection and single-cell cloning steps

were conducted using the same method as for hGOiaza lines.

Western blotting process

Lysate-transferred membranes were blocked in 5% BSA (Sigma-Aldrich, A1470) in TBS-T

(Biosesang, TR2007-100-74) for 30 minutes at room temperature. After blocking,

membranes were incubated overnight at 40°C with primary antibodies diluted in the same

blocking buffer: Anti-HA.11 Epitope Tag Antibody (1:5000; BioLegend, 951514) or Anti-a-
Antin-1 (1:1000; Sigma-Aldrich, A2066). After washing three times with 1x TBS-T on a
rocking incubator at room temperature for 5 minutes each, membranes were incubated with
HRP-conjugated secondary antibodies (1:2000), including goat anti-mouse IgG-HRP for Anti
HA (Santa Cruz, sc-2005) and goat anti-rabbit IgG-HRP for AntiActin (Santa Cruz, sc-2004),
diluted in 5% BSA in TBS-T for 1 hour at room temperature. Membranes were then washed
three times with 1x TBS-T on a rocking incubator at room temperature for 5 minutes each.

Signal was detected using enhanced chemiluminescence (Thermo Scientific, 34580) and
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imaged using a Bio-Rad ChemiDoc MP Imaging System. Membranes were stripped for
reblotting by incubating them in stripping buffer for 10 minutes after imaging. Reblotting was

done by subsequently repeating the whole process from primary antibody incubation.

Counting the ratio between endogenous APOBEC mRNA and overexpressed APOBEC

MRNA

To distinguish transcripts originating from endogenous APOBEC genes versus the
exogenous construct, we utilize sequence differences between the two sources. For A3A,
two heterozygous variants at Chr22:39,357586 (C/T) and 39,357,599 (C/T) were used. In the
endogenous A3A allele, reads carried the same base at both positions-either C/C or T/T-
while the inserted construct contained C/T bases at the two positions, respectively. For A3B,
a homozygous variant at Chr22:39,381,999 (C) was present in the endogenous gene, while

the construct carried only T at the same locus.

Procedure of measurement of viability of organoids

Culture mediums in each well in the plate were completely removed. Each well was washed
twice with 1 ml of PBS by repeatedly removing the medium and adding PBS. After washing,
PBS was replaced with fresh medium. An equivalent volume of Celltiter-Glo 3D Assay kit

(Promega, Cat No0.G9681) was added to each well. Matrigel was dissolved in the reaction

solution by incubating at 4°C for 30 minutes with shaking. The amounts of ATP in each well

were measured with a luminometer (BERTHOLD Technologies GmbH, Cat No.TriStar LB
942). The viability percentage was calculated by dividing luminescence after doxycycline

treatment by the average luminescence of untreated control groups.

Whole-genome sequencing SNVs and indels filtering criteria

Somatic mutations (SNVs and indels) were filtered with the following criteria: (1) depth >5;

(2) median mapping quality (MQ) of variant supporting reads 225; (3) median MQ of



reference supporting reads 225; (4) abs (median MQ of variant supporting reads - median
MQ of reference supporting reads) <10; (5) variant allele frequencies of position in panel of
normal <0.02; (6) the number of variant supporting reads in the corresponding 1% single-cell
cloned line= 0; (7) the number of variant supporting read counts 23; (8) median base quality
of variant supporting reads 230; (9) Ratio of variant supporting reads having soft-clipping
<0.5; (10) the distance of variants from the near end of read =3; (11) variant supporting

reads having mixed population of FIR2 and F2R1 reads.

BotSeqS variant filtering criteria

F1R2 and F2R1 reads from same DNA was grouped and filtered with the following criteria:
(1) total depth of each type of read 23; (2) the number of variant-supporting reads =3 or 90%
of reads; (3) distances of mutations from both extreme of each read >5 bp; (4) distances of
mutations from the fragment ends >100 bp, taking strand orientation into account (e.g.,
excluding C>T variants near the end of F1R2 reads, but not G>A); (5) median mapping
quality of variant reads =20; (6) median base quality of variant reads 230; (7) the number of

variants in WGS of HEK293T <3; (8) the number of variants in WGS of control <1.

RNA editing filtering criteria

The RNA editing spectrum was represented as 192 patterns of single-base changes, defined
by the substitution type and the immediately adjacent bases on the 5’ and 3’ ends in the
canonical MRNA sequence. The number of features is twice that of the DNA mutational
signature (Alexandrov et al. 2013) because RNA does not exhibit symmetric base changes

in general.

A total of 18 experimental datasets were used as input, divided into two subsets: the A3A
and A3B sets. Each subset included three batches from experiments with 0 pg/ml, 0.1 pg/ml,
and 3 ug/ml APOBECS3 exposure, totaling nine batches per set. Initially, the signature

extraction method from our previous work (Youk et al. 2024) was applied without


https://paperpile.com/c/GHjhzJ/XdIVO
https://paperpile.com/c/GHjhzJ/yCifR

modification, and the optimal number of independent RNA editing signatures was
determined. As a result, four potential RNA editing signatures were identified, attributable to

APOBEC3A, APOBEC3B, ADAR, and other endogenous editing processes.

The APOBEC3A and APOBEC3B signatures aligned well with the C>T editing patterns
observed in experiments with varying exposure levels. However, the ADAR signature
consistently appeared within these signatures at substantial proportions. This “leakage”
phenomenon occurs due to the constitutive activity of ADAR, causing its signal to appear in
RNA editing spectra across all experimental conditions. This complicates accurate

guantification of RNA editing processes in a sample.

To mitigate the leakage phenomenon, an L1 constraint was imposed on the signature matrix
(W). We adapted a sparse NMF update algorithm (Le Roux et al. 2015), which originally
applied the L1 constraint to the exposure matrix (H). We modified its objective function by
transposing the data matrix (V) as well as W and H, performing the updates, and then back-
transposing to obtain W. The matrix W was column-normalized so that each column
summed to one. The sparsity coefficient (1) was set to 0.6 after evaluating several values in

the range [0.001, 10].

The A3A set yielded well-separated ADAR and APOBEC3A signatures, and the A3B set
yielded well-separated ADAR and APOBEC3B signatures. The ADAR signatures learned
from the A3A and A3B sets were consistent (cosine similarity = 0.999) and were therefore
merged into a single ADAR signature by averaging. Endogenous RNA editing signatures
other than ADAR were negligible and contributed little to the overall analysis, so no

additional signatures were pursued.

Finally, the three RNA editing signatures were refitted to individual samples to quantify the

contributions of each RNA editing process in each sample.
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Simulation of for correction of the number of clustered mutation event

Identified clustered mutations from our analysis and 703,858 SNVs from 125 samples in the
PCAWG database, where the contribution of age-related mutational signatures (SBS1,

SBS5, and SBS40) is over 0.8, were utilized for simulation.

The target number of SNVs was divided into 33 groups, increasing in steps of 2,000 from
2,000 to 10,000; in steps of 5,000 from 15,000 to 100,000; and in steps of 10,000 from
110,000 to 200,000. From the observed 615 omikli (1,369 SNVs) and 109 kataegis (559
SNVs) events, the clustered mutation events were randomly sampled under the following
conditions for 50 iterations: 50, 100, 250, 500 omikli, and 25, 50, 75, 100 kataegis.
Background mutations were selected to match the number remaining after subtracting the
number of clustered mutations from the target number of SNVs. With SigProfilerClusters
(Bergstrom et al. 2022), clustered mutations, omikli and kataegis, were identified, and the
detection rate was calculated. By combining data from the two types of clustered mutations,
the relationship between the number of mutations and the detection rate of clustered
mutations was estimated (Supplemental Fig. S16) using the “drm” function with the

fct=AR.3() option in the drc, R package (Ritz et al. 2019).


https://paperpile.com/c/GHjhzJ/ksZH
https://paperpile.com/c/GHjhzJ/puN5l

Supplemental References

Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013. Deciphering
signatures of mutational processes operative in human cancer. Cell Rep 3: 246-259.
http://dx.doi.org/10.1016/j.celrep.2012.12.008.

Bergstrom EN, Kundu M, Theileh N, Alexandrov LB. 2022. Examining clustered somatic
mutations with SigProfilerClusters. Bioinformatics 38: 3470-3473.
https://academic.oup.com/bioinformatics/article-pdf/38/13/3470/49883724/btac335.pdf
(Accessed August 1, 2025).

Fujii M, Matano M, Nanki K, Sato T. 2015. Efficient genetic engineering of human intestinal
organoids using electroporation. Nat Protoc 10: 1474-1485.
http://dx.doi.org/10.1038/nprot.2015.088.

Gaebler A-M, Hennig A, Buczolich K, Weitz J, Welsch T, Stange DE, Pape K. 2020.
Universal and Efficient Electroporation Protocol for Genetic Engineering of
Gastrointestinal Organoids. J Vis Exp. http://dx.doi.org/10.3791/60704.

Lee J-H, Kim S, Han S, Min J, Caldwell B, Bamford A-D, Rocha ASB, Park J, Lee S, Wu S-
HS, et al. 2022. p57 imposes the reserve stem cell state of gastric chief cells. Cell Stem
Cell 29: 826-839.€9. http://dx.doi.org/10.1016/j.stem.2022.04.001.

Le Roux J, Hershey JR, Weninger F. 2015. Deep NMF for speech separation. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE
http://ieeexplore.ieee.org/document/7177933/.

Mihara E, Hirai H, Yamamoto H, Tamura-Kawakami K, Matano M, Kikuchi A, Sato T, Takagi
J. 2016. Active and water-soluble form of lipidated Wnt protein is maintained by a serum
glycoprotein afamin/a-albumin. https://elifesciences.org/articles/11621 (Accessed
August 30, 2024).

Ritz C, Jensen SM, Gerhard D, Streibig JC. 2019. Dose-Response Analysis Using R. CRC
Press
https://books.google.com/books/about/Dose_Response_Analysis_Using_R.html?hl=&id
=VzZWoDwAAQBAJ.

Youk J, Kwon HW, Kim R, Ju YS. 2021. Dissecting single-cell genomes through the clonal
organoid technique. Exp Mol Med 53: 1503-1511. http://dx.doi.org/10.1038/s12276-
021-00680-1.

Youk J, Kwon HW, Lim J, Kim E, Kim T, Kim R, Park S, Yi K, Nam CH, Jeon S, et al. 2024.
Quantitative and qualitative mutational impact of ionizing radiation on normal cells. Cell
Genom 4: 100499. http://dx.doi.org/10.1016/j.xgen.2024.100499.


http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/XdIVO
http://dx.doi.org/10.1016/j.celrep.2012.12.008
http://paperpile.com/b/GHjhzJ/XdIVO
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
https://academic.oup.com/bioinformatics/article-pdf/38/13/3470/49883724/btac335.pdf
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/ksZH
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/VdwM8
http://dx.doi.org/10.1038/nprot.2015.088
http://paperpile.com/b/GHjhzJ/VdwM8
http://paperpile.com/b/GHjhzJ/SRtEn
http://paperpile.com/b/GHjhzJ/SRtEn
http://paperpile.com/b/GHjhzJ/SRtEn
http://paperpile.com/b/GHjhzJ/SRtEn
http://paperpile.com/b/GHjhzJ/SRtEn
http://dx.doi.org/10.3791/60704
http://paperpile.com/b/GHjhzJ/SRtEn
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/T7hAp
http://dx.doi.org/10.1016/j.stem.2022.04.001
http://paperpile.com/b/GHjhzJ/T7hAp
http://paperpile.com/b/GHjhzJ/PJn85
http://paperpile.com/b/GHjhzJ/PJn85
http://paperpile.com/b/GHjhzJ/PJn85
http://paperpile.com/b/GHjhzJ/PJn85
http://paperpile.com/b/GHjhzJ/PJn85
http://ieeexplore.ieee.org/document/7177933/
http://paperpile.com/b/GHjhzJ/PJn85
http://paperpile.com/b/GHjhzJ/JwFc
http://paperpile.com/b/GHjhzJ/JwFc
http://paperpile.com/b/GHjhzJ/JwFc
https://elifesciences.org/articles/11621
http://paperpile.com/b/GHjhzJ/JwFc
http://paperpile.com/b/GHjhzJ/JwFc
http://paperpile.com/b/GHjhzJ/puN5l
http://paperpile.com/b/GHjhzJ/puN5l
http://paperpile.com/b/GHjhzJ/puN5l
http://paperpile.com/b/GHjhzJ/puN5l
https://books.google.com/books/about/Dose_Response_Analysis_Using_R.html?hl=&id=VzWoDwAAQBAJ
https://books.google.com/books/about/Dose_Response_Analysis_Using_R.html?hl=&id=VzWoDwAAQBAJ
http://paperpile.com/b/GHjhzJ/puN5l
http://paperpile.com/b/GHjhzJ/g0oKy
http://paperpile.com/b/GHjhzJ/g0oKy
http://paperpile.com/b/GHjhzJ/g0oKy
http://paperpile.com/b/GHjhzJ/g0oKy
http://paperpile.com/b/GHjhzJ/g0oKy
http://paperpile.com/b/GHjhzJ/g0oKy
http://dx.doi.org/10.1038/s12276-021-00680-1
http://dx.doi.org/10.1038/s12276-021-00680-1
http://paperpile.com/b/GHjhzJ/g0oKy
http://paperpile.com/b/GHjhzJ/yCifR
http://paperpile.com/b/GHjhzJ/yCifR
http://paperpile.com/b/GHjhzJ/yCifR
http://paperpile.com/b/GHjhzJ/yCifR
http://paperpile.com/b/GHjhzJ/yCifR
http://paperpile.com/b/GHjhzJ/yCifR
http://paperpile.com/b/GHjhzJ/yCifR
http://dx.doi.org/10.1016/j.xgen.2024.100499
http://paperpile.com/b/GHjhzJ/yCifR

	Supplemental Material_part1.fin
	Supplemental_Fig_S1
	Supplemental_Fig_S2
	Supplemental_Fig_S3
	Supplemental_Fig_S4
	Supplemental_Fig_S5
	Supplemental_Fig_S6
	Supplemental_Fig_S7
	Supplemental_Fig_S8
	Supplemental_Fig_S9
	Supplemental_Fig_S10
	Supplemental_Fig_S11
	Supplemental_Fig_S12
	Supplemental_Fig_S13
	Supplemental_Fig_S14
	Supplemental_Fig_S15
	Supplemental_Fig_S16
	Supplemental Methods



