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Supplemental Notes 35 

Study Cohorts, Data Provenance, and Ethics Statement 36 

NSPT, CAS, and Changfeng cohorts have been established by our group and described 37 

previously. All DNA methylation data analyzed in this study were obtained from publicly 38 

accessible databases from previously published studies. Written informed consent was 39 

obtained from all participants as part of the original studies, and each original study was 40 

approved by the respective institutional review board. Detailed descriptions of the cohorts are 41 

as follows: 42 

National Survey of Physical Traits cohort (NSPT)  43 

The NSPT cohort has been previously described in (Peng et al. 2024). This cohort consists of 44 

3,538 Chinese individuals (mean age 50.2 years, 37.0% male). The original study was 45 

approved by the Ethics Committee of Human Genetic Resources of the School of Life 46 

Sciences, Fudan University, Shanghai (14117). Data are available at the National Omics Data 47 

Encyclopedia (NODE, https://www.biosino.org/node) under accession number 48 

OEZ00008120. 49 

Chinese Academy of Sciences cohort (CAS)  50 

The CAS cohort has been described in (Peng et al. 2024). This replication cohort includes 51 

1,060 individuals, predominantly highly educated individuals in intellectual professions 52 

(mean age 40.8 years, 59.7% male). The original study was approved by the Institutional 53 

Review Board of Beijing Institute of Genomics and Zhongguancun Hospital (2020H020, 54 
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2021H001, and 20201229). The data are available at OMIX (https://ngdc.cncb.ac.cn/omix/) 55 

under accession code OMIX004333. 56 

Shanghai Changfeng cohort (Changfeng)  57 

The Changfeng cohort is a longitudinal study previously described in (Gao et al. 2010; Li et 58 

al. 2024). The dataset includes 407 subjects with a median follow-up of 4 years. The original 59 

study was approved by the Research Ethics Committee of Zhongshan Hospital, Fudan 60 

University (No. 2008-119 and B2013-132). Data are available at NODE 61 

(https://www.biosino.org/node) under accession number OEP00004768. 62 

Genome-wide DNA Methylation Profiling and Quality Control 63 

The methods for DNA extraction, bisulfite conversion, and genome-wide DNA methylation 64 

profiling using the Illumina MethylationEPIC BeadChip for all three cohorts (NSPT, CAS, 65 

and Changfeng) were detailed in their original publications (Li et al. 2024; Peng et al. 2024). 66 

For the present study, we obtained the raw data and performed the following quality 67 

control and processing steps. Raw .idat files were processed using minfi (for NSPT) or 68 

ChAMP (for CAS and Changfeng) (Aryee et al. 2014; Morris et al. 2014). Quality control 69 

excluded samples with unclear gender and probes with SNPs, sex chromosome location, or 70 

high missingness. Missing values were imputed (impute.knn), Type-2 probe bias was 71 

corrected using Beta-Mixture Quantile normalization (BMIQ), and batch effects were 72 

adjusted using the ComBat function on M-values(Johnson et al. 2007; Teschendorff et al. 73 

2013). 74 
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 75 

Serum metabolomics 76 

For this study, we used serum metabolomics data from 3,037 individuals from the NSPT 77 

cohort (Lin et al. 2025), with the technical methods first reported in (Wu et al. 2021). Briefly, 78 

serum metabolomics was performed on a 600 MHz NMR spectrometer (Bruker Biospin), and 79 

data were quantified using Bruker's B.I.LISA™ and B.I.Quant-PS™ software. A total of 351 80 

metabolite-related indicators were obtained through detection and calculation; we excluded 81 

indicators with a >20% missing rate. Finally, 336 metabolite-related indicators from 3,037 82 

individuals were used for further analyses. 83 

Genotype data processing 84 

The genotype data for 3,513 NSPT samples were previously generated and described in (Peng 85 

et al. 2024). Briefly, samples were genotyped using the Illumina Infinium Global Screening 86 

Array. After stringent quality control using PLINK, the data were phased with SHAPEIT3 87 

and imputed with IMPUTE2 using the 1000 Genomes Project phase 3 reference panel(Purcell 88 

et al. 2007; Howie et al. 2009; O'Connell et al. 2016). After post-imputation filtering, 89 

8,603,582 high-quality SNPs were available for the analyses in this study. 90 

Phenotype data processing 91 

The physiological and blood biochemical phenotype data for the NSPT cohort were collected 92 

and described in a previous publication(Peng et al. 2025). Briefly, physiological 93 

measurements (e.g., height, weight, BMI, blood pressure) were taken on-site. Blood 94 
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biochemical phenotypes were obtained from serum samples, and a Toshiba TBA-40FR 95 

biochemical analyzer was used to measure 13 phenotypes, including ALT, AST, CHO, 96 

CREA, DBIL, GLU, HDL, IBIL, LDL, TBIL, TG, UA, and urea. 97 

Statistical analysis 98 

White method for detecting epigenetic drift-CpGs 99 

To identify epigenetic drift-CpGs with heteroscedasticity related to age, we improved upon 100 

the two-step regression testing method based on White's heteroscedasticity test(White 1980).  101 

Simulation benchmarking for heteroscedasticity testing of drift-CpGs 102 

To evaluate the performance of existing heteroscedasticity testing methods in detecting 103 

epigenetic drift-CpGs, we simulated four different types of DNA methylation datasets: 104 

Dataset 1 (Null model): To evaluate the Type I error rate, this dataset exhibited no 105 

heteroscedasticity or outliers. It consisted of 3,000 ages permuted from the real data and 106 

10,000 randomly selected CpGs from our quality-controlled data. 107 

Dataset 2 (Null model with outliers): To test for robustness, this dataset included outliers 108 

but no heteroscedasticity. It consisted of 3,000 ages permuted from the real data, with 10,000 109 

simulated CpG values where the standard deviation was set to ten times the true standard 110 

deviation. 111 

Dataset 3 (Linear heteroscedasticity): To test power for linear effects, this dataset 112 

simulated a linear relationship between CpG variance and age. It consisted of 3,000 ages 113 
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permuted from the real data and 10,000 simulated CpG values where the age regression 114 

coefficients for the variance of the residuals increased from 1  10-5 to 1  10-4. 115 

Dataset 4 (Non-linear heteroscedasticity): To test power for complex effects, this dataset 116 

simulated a non-linear relationship. For 3,000 ages permuted from the real data, the 117 

regression coefficient for CpG residual variance was set to -1.0  10-3 for ages ≤ 45, the 118 

variance was set to 1.0  10-2 for ages between 45 and 55, and the coefficient was set to 1.0  119 

10-3 for ages > 55. 120 

We then tested the Type I error and statistical power for four existing methods on each 121 

dataset: 122 

Method A (DGLM): The Double Generalized Linear Model, using the dglm R 123 

package(Liu et al. 2023) 124 

Method B (Likelihood Ratio Test): The heteroscedastic likelihood ratio test, using the 125 

gamlss R package(Bergstedt et al. 2022). 126 

Method C (Breusch-Pagan Test): The Breusch-Pagan test for heteroscedasticity(Slieker 127 

et al. 2016). 128 

Method D (White Test): The White test, as described in this study(White 1980). 129 

Finally, we evaluated the performance of the four methods based on the false-positive 130 

rate (Dataset 1), the impact of outliers (Dataset 2), and the statistical power to detect linear 131 

(Dataset 3) and non-linear (Dataset 4) heteroscedasticity. 132 
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Epigenome-wide drift analysis: multi-scale functional characterization  133 

To explore the correlation between DNA methylation variation and initial/terminal DNA 134 

methylation levels, we presented the changes in epigenetic drift and methylation levels. DNA 135 

methylation levels at significant drift-CpGs identified by our epigenome-wide drift analysis 136 

were compared between young (mean - 2 standard deviations ) and old (mean + 2 standard 137 

deviations) NSPT populations. A scatter plot was generated using initial methylation levels 138 

from the younger group (x-axis) and terminal methylation levels from the older group (y-139 

axis), with points colored according to drift direction (positive or negative). Additionally, 140 

heatmaps were constructed to visualize the density distributions of positive and negative drift-141 

CpGs across predefined methylation intervals ([0–0.05], [0.05–0.1], [0.1–0.9], [0.9–0.95], 142 

[0.95–1]). 143 

We applied the EpiDISH algorithm(Zheng et al. 2018) to estimate the proportions of 144 

major blood cell types-myeloid cells (monocytes and neutrophils) and lymphoid cells (CD4+ 145 

T, CD8+ T, NK, and B cells)-using DNA methylation profiles derived from blood plasma 146 

samples. For each cell type, individuals were stratified into three groups based on their 147 

estimated proportions: top 10% (high), bottom 10% (low), and middle 80% (intermediate) for 148 

illustrative purposes. To assess cell-type-specific contributions to methylation drift, we 149 

adapted the CellDMC framework (Zheng et al. 2018) to analyze significant drift-CpGs. For 150 

each CpG, we modeled the interaction between age and estimated cell-type proportion on a 151 

multiplicative scale, using the squared residual from a CpG ~ age regression as a quantitative 152 

measure of drift. The resulting P-values reflected the specificity of age-dependent 153 
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methylation drift across cell types.CpGs with Bonferroni-adjusted P-values < 0.05 were 154 

considered to show statistically significant cell-type-specific drift. 155 

To elucidate the contribution of age-related methylation drift to inter-individual 156 

immune variation at single-cell resolution, we integrated population-scale epigenetic drift 157 

profiles with single-cell transcriptomic data from peripheral blood mononuclear cells 158 

(PBMCs) in the OneK1K cohort (number of samples = 982, number of 159 

cells=1,248,980)(Yazar et al. 2022). Specifically, we compared transcriptional dynamics 160 

between individuals at the extremes of the age spectrum, defined as the youngest 1% and 161 

oldest 1% of the cohort. Paired t-tests were used as a complementary approach to compare 162 

overall gene expression and noise distributions across age groups and drift categories. In 163 

addition, for each gene and for each immune cell type, we assessed age-associated changes in 164 

both transcriptional levels and transcriptional noise using the BASiCS algorithm(Vallejos et 165 

al. 2015). This method allowed us to simultaneously estimate changes in gene expression 166 

means and cell-to-cell variability between the young and old groups. Analyses were stratified 167 

by the direction of methylation drift (positive vs. negative drift-CpGs), enabling us to dissect 168 

whether specific drift patterns are linked to altered expression magnitude or variability within 169 

defined immune subpopulations. 170 

We performed Transcription factor binding site (TFBS) enrichment analysis on drift-171 

CpGs. For each CpG site, genomic sequences from two windows, 10 bp (±5 bp) and 30 bp 172 

(±15 bp), were extracted for analysis. TF enrichment was conducted using the TFmotifView 173 

web tool (Leporcq et al. 2020) (https://bardet.u-strasbg.fr/tfmotifview/), which compiles motif 174 
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information for 176 human transcription factors. Statistical significance was assessed using 175 

Bonferroni correction, with an adjusted P-value threshold of <0.05 considered statistically 176 

significant. 177 

Epigenome-wide age-associated CpG analysis 178 

To identify the age-associated CpGs, termed here as clock-CpGs, we used a linear model to 179 

perform epigenome wide association analysis based on 469,061 CpGs in the NSPT cohort 180 

with the same starting amount as EWDS. P value smaller than 1×10-7 (Bonferroni P < 0.05) 181 

were considered as epigenome-wide significant. Covariates included gender, BMI, cell 182 

composition, experiment batch, the first 5 genetic principal components and the first 5 183 

epigenetic principal components. Genomic principal components (genomic PCs) were 184 

calculated using PLINK 1.9 based on all genome-wide SNPs. For methylation principal 185 

components (methylation PCs), we applied the prcomp function in R to the β values of 186 

810,000 CpG sites across the genome. 187 

Biological annotations 188 

To provide biological annotation of the identified methylation sites, the CpGs were mapped 189 

by referring to the manufacturer's manifest files (GRCh37 hg19 build). We aligned data to 190 

GRCh37 (hg19) because our Illumina methylation array probes are predominantly annotated 191 

to this assembly. This also ensured consistency with vast public datasets. Given that most 192 

gene associations are conserved across genome builds and our epigenetic drift analyses focus 193 

on well-characterized genomic regions, we do not expect the use of a more recent assembly 194 

(e.g., GRCh38) to significantly impact our biological conclusions. The genomic annotations 195 
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contained: Enhancer (in FANTOM5 project defined enhancer regions), TSS1500 (200-1500 196 

bases upstream of the TSS), TSS200 (0-200 bases upstream of the transcriptional start site), 197 

UTR5 (within the 5' untranslated regions), 1stExon (the first exon), ExonBnd (within 20 198 

bases of an exon boundary, i.e. the start or end of an exon), Body (gene body) and UTR3 199 

(within a 3' untranslated region), Promoter (the union of TSS1500, TS200, 1stExon and 5' 200 

UTR). The CpG island annotations included: N_Shelf (upstream 2-4 kb from CpG islands), 201 

N_Shore (upstream 0-2 kb from CpG islands), Island, S_Shore (downstream 0-2 kb from 202 

CpG islands) and S_Shelf (downstream 2-4 kb from CpG islands). Odds ratio was calculated 203 

as follows: 204 

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =
 𝑁𝑓 (𝑁𝑑𝑟𝑖𝑓𝑡 − 𝑁𝑓⁄ )

𝑁𝑤ℎ𝑜𝑙𝑒_𝑓 (𝑁 − 𝑁𝑤ℎ𝑜𝑙𝑒_𝑓
)⁄
 205 

𝑁 is the total CpG number, 𝑁𝑤ℎ𝑜𝑙𝑒_𝑓 is the CpG in 𝑁 which were located in the 206 

functional region, 𝑁𝑑𝑟𝑖𝑓𝑡 is the drift-CpG number, 𝑁𝑓 is the CpG in 𝑁𝑑𝑟𝑖𝑓𝑡 which were 207 

located in the functional region. 208 

To explore the functional differences of different types of drift and clocks, we conducted 209 

relative enrichment analysis of chromosome states and gene regions separately for positive 210 

and negative drift, as well as positive and negative clocks. Finally, we assessed the 211 

significance using a hypergeometric test with a significance threshold of 0.05. 212 

Replication analysis 213 

Drift-CpGs significant in the discovery analysis (Bonferroni threshold P <1×10-7) were 214 

followed up with a replication analysis in CAS data based on White method. Next, to examine 215 
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the reliability of drift-CpGs in other ancestral populations, we extracted methylation sites 216 

from European-derived methylation data that significantly overlapped with CAS validation. 217 

Furthermore, we used the White method to validate the drift-CpGs using the GSE40279 218 

dataset, which includes a mixed population of 426 Caucasian and 230 Hispanic individuals, 219 

assessed with a 450K beadchip, and with an age range of 19-101(Hannum et al. 2013). 220 

In the replication analysis of the longitudinal Changfeng population, 410,440 CpG sites 221 

were retained that matched with NSPT. The delta beta between the two time points was 222 

calculated for each CpG site, and then the average delta beta at the individual level was 223 

computed. Five samples were excluded, which had individual mean delta beta values 224 

exceeding 3 standard deviations from the mean, resulting in 402 remaining samples used for 225 

further analysis. The CpG drift value between the two stages was calculated for each CpG site 226 

using the following formula: 227 

𝐶𝑝𝐺𝑑𝑟𝑖𝑓𝑡 𝑖,𝑛,𝑠 =  (𝐶𝑝𝐺𝑖,𝑛,𝑠 − 𝐶𝑝𝐺𝑁𝑆𝑃𝑇 𝑖)2 228 

Here, i refers to CpG site, n refers to sample, and s refers to stage. A paired t-test was 229 

performed on the CpG-drift values for the two stages and a significance threshold of P < 0.05 230 

was used.  231 

Finally, we investigated the stability of drift in a twin cohort using the GSE61496 232 

dataset, which comprised 150 pairs of MZ twins assessed with a 450K beadchip, with 78 pairs 233 

being male and 72 pairs being female twins, and with an age range of 30-74 (Tan et al. 2014). 234 

We extracted methylation sites from the twin methylation data that significantly overlapped 235 

with CAS validation and then fitted a linear regression model to the absolute difference in age 236 
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and twin pair values. Drift-CpGs with a P < 0.05 and an effect direction consistent with the 237 

discovery analysis were considered successful replications. 238 

Construction of epigenetic drift score (EDS) 239 

To construct an EDS that quantifies an individual's level of positive epigenetic drift, we began 240 

by selecting drift-CpGs as representatives of the overall epigenetic drift status in an 241 

individual. First, we selected the NSPT-significant drift-CpGs (P < 110-7) that are also CAS-242 

replicated drift-CpGs (P < 510-2) and Hannum-replicated drift-CpGs (P < 510-2) to ensure 243 

that all selected drift-CpGs are robustly replicated. Then, we calculated the Fisher combined 244 

P-values for the significantly associated drift-CpGs from these three cohorts and removed all 245 

CpGs within a 500-kilobase pair distance of the region's most significant drift-CpG in any 246 

genomic region, resulting in a set of 2,069 independent and informative drift-CpGs. 247 

Subsequently, we computed the variability of the chosen drift-CpGs and quantified an 248 

individual's drift status by aggregating the age-correlated weighted variances. The score for 249 

each drift site was computed as 𝑠𝑖𝑗 = (𝛽𝑖𝑗 − 𝛽𝑗̅)2/𝑆𝐷𝑗, where 𝑠𝑖𝑗 denotes the drift 250 

magnitude for individual i at site j, 𝛽𝑖𝑗 is the methylation level for individual i at site j,  𝛽̅𝑗 is 251 

the mean methylation level at site j, and 𝑆𝐷𝑗 is the standard deviation of methylation at site j. 252 

A non-negative least squares regression between each site's drift score 𝑠𝑖𝑗 and the age of the 253 

individual 𝑦𝑖 was then performed, 𝑦𝑖 = 𝛿0𝑗 + 𝛿1𝑗𝑠𝑖𝑗  , where 𝛿0𝑗 is the intercept term and 254 

𝛿1𝑗 is the regression coefficient reflecting the correlation between drift score and age. This 255 

step of non-negative least squares regression ultimately selected 204 CpG sites with non-zero 256 

coefficients for constructing the positive epigenetic drift score. The overall positive epigenetic 257 
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drift score 𝑠𝑖 for individual i was calculated by summing across all k=204 drift sites, 258 

weighted by the regression coefficient, 𝑠𝑖 = ∑ 𝛿1𝑗𝑠𝑖𝑗  𝑘
𝑗=1 . Here the weighting factors derived 259 

from the regression on the NSPT and Hannum cohorts are used as a standard reference for 260 

calculating positive epigenetic drift score in other cohorts without the need for re-estimation. 261 

For normalization, we adapted the range normalization method to make positive epigenetic 262 

drift score comparable across populations that were not part of the initial NSPT and Hannum 263 

cohorts. We linearly transformed the individual drift score 𝑠𝑖 to a range between 0 and 1. 264 

This was done using the NSPT and Hannum cohorts as reference populations to anchor the 265 

minimum and maximum possible drift scores, denoted as 𝑚𝑖𝑛(𝑠𝑖) and 𝑚𝑎𝑥(𝑠𝑖), projected at 266 

ages 0 and 120 years respectively. The normalized positive epigenetic drift score  267 

(EDS_POS) 𝑆𝑖 for individual i is calculated as 𝑆𝑖 =
𝑠𝑖− 𝑚𝑖𝑛(𝑠𝑖)

𝑚𝑎𝑥(𝑠𝑖)−𝑚𝑖𝑛(𝑠𝑖)
.  268 

For individual's level of negative epigenetic drift, we directly used the drift scores of all 269 

significant drift-CpGs from NSPT and construct a non-negative least squares regression 270 

model. Ultimately, we obtained 81 negative drift sites with non-zero coefficients for the 271 

construction of the negative epigenetic drift score (EDS_NEG), and the scores were range 272 

standardized to a scale of 0-1 for ages 0-120. 273 

We implemented an entropy-based approach adapted from (Scherer et al. 2020) to 274 

measure individual-level DNA methylation variability using Illumina EPIC array-derived β-275 

values. For each participant in the NSPT cohort, we computed genome-wide entropy 276 

separately for positive and negative drift CpGs, using the Shannon entropy formula: H = -277 

Σ[p*log₂(p+110-4)], where p represents the methylation β-value at each CpG site. We then 278 



15 

 

evaluated the concordance between these individual entropy measures and population-level 279 

epigenetic drift scores (EDS_POS and EDS_NEG) through Pearson's correlation analysis. In 280 

the longitudinal Changfeng cohort, we assessed temporal changes in entropy measures 281 

between baseline and 4-year follow-up using two-tailed paired t-tests, with statistical 282 

significance defined as P < 0.05. 283 

Assessment of the association between EDS and age 284 

To assess the association between EDS and age, we first calculated the correlation between 285 

EDS and age in the NSPT and CAS cohorts, and evaluated the differences in EDS distribution 286 

among different gender groups. Next, to quantify the contribution of selected drift-CpGs to 287 

the EDS, we calculated the correlation between the drift score and age as the number of 288 

positive drift-CpGs increased from 1 to 204 and negative drift-CpGs increased from 1 to 81, 289 

respectively. We then displayed the changes in the cumulative curve using R, with a step size 290 

of 50 and 50 repetitions at each step.. 291 

To measure the association between EDS and published methylation-based age 292 

indicators, we calculated the epigenetic age based on the Horvath and Hannum clocks (first-293 

generation clocks), Levine's phenotypic age (second-generation clock), and Dunedin's aging 294 

rate (third-generation clock) using NSPT and CAS samples. We evaluated the Pearson's 295 

correlation before and after adjusting for chronological age, with a significance level of P < 296 

0.05. Finally, we displayed the results in a heatmap using the R package corrplot. 297 
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Association assessment of EDS and metabolome 298 

To examine the impact of epigenetic drift on lipid metabolism, we conducted an association 299 

analysis between EDS and lipidomic data in the NSPT cohort, which included both DNA 300 

methylation data and lipidomic profiles. Based on the composition and concentration 301 

indicators of 336 NMR-detected lipoprotein subfractions (including 176 measured values and 302 

175 derived values), we performed linear regression analyses to examine the associations 303 

between metabolic indicators and EDS, while adjusting for covariates such as BMI, age, 304 

gender, and population. To determine statistical significance, we used FDR-adjusted P < 0.05 305 

as the threshold. To compare the associations of the epigenetic drift scores and other 306 

methylation indicators with metabolism, we separately assessed the significance of the 307 

associations between the Horvath and Hannum clocks (first-generation clocks), Levine's 308 

phenotypic age (second-generation clock), and Dunedin's aging rate (third-generation clock) 309 

with metabolic indicators. 310 

Finally, we visualized the effect sizes of significant metabolic traits through a forest plot 311 

and displayed the correlations among metabolic traits using a heatmap. These visualizations 312 

were generated using the R package forestplot. 313 

GWAS analysis of EDS 314 

To identify potential genes associated with epigenetic drift, we performed a genome-wide 315 

association analysis of EDS using the NSPT samples, which had both DNA methylation data 316 

and genomic data available. We employed linear regression models, implemented in PLINK 317 

(Purcell et al. 2007), to examine the associations between EDS and SNPs. The models were 318 
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adjusted for covariates such as age, gender, and the top 10 principal components of the 319 

genomic data. The significance threshold is P < 5×10-8. Additionally, we utilized the 320 

GCTA(Yang et al. 2011) software to estimate the heritability of EDS, providing insights into 321 

the proportion of phenotypic variance that can be attributed to genetic factors. Finally, we 322 

analyzed chromatin state changes during aging using Integrative Genomics Viewer (IGV), 323 

leveraging hMSC data from GSE156409 (McCauley et al. 2021). The young group comprised 324 

early-passage cells at population doubling (PD)12, while the old group consisted of late-325 

passage PD32 cells. 326 

Published software 327 

We utilized publicly available software, which can be requested using the following URLs: R 328 

(V4.4.0, https://cran.r-project.org/)(R Core Team 2024); R package ggplot2 for visualization 329 

(V3.5.1, https://cran.r-project.org/web/packages/ggplot2/index.html); R package diptest for 330 

unimodality test (V0.77-1, https://cran.r-project.org/web/packages/diptest/index.html); R 331 

package missMethyl for GO and KEGG pathway enrichment analyses (V3.13, 332 

https://bioconductor.org/packages/3.13/bioc/html/missMethyl.html); R package poolr for 333 

stringent Tippett test (V1.1-1, https://cran.r-project.org/web/packages/poolr/index.html); R 334 

package corrplot for correlation visualization (V0.94, https://cran.r-335 

project.org/web/packages/corrplot/index.html); R package forestplot for effect sizes 336 

visualization (V3.1.3, https://cran.r-project.org/web/packages/forestplot/index.html); 337 

SHAPEIT3 for phasing (SHAPEIT3, https://jmarchini.org/shapeit3); IMPUTE2 for 338 

imputation (IMPUTE version 2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html); 339 

https://cran.r-project.org/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/diptest/index.html
https://bioconductor.org/packages/3.13/bioc/html/missMethyl.html
https://cran.r-project.org/web/packages/poolr/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/forestplot/index.html
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
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PLINK for SNP data-processing (PLINK2.0, https://www.cog-genomics.org/plink/2.0); 340 

GCTA for heritability calculation (V1.93.2 beta, http://cnsgenomics.com/software/gcta). IGV 341 

for interactive genome visualization (IGV, https://igv.org/) 342 

 343 

 344 

https://www.cog-genomics.org/plink/2.0
http://cnsgenomics.com/software/gcta
https://igv.org/
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Supplemental Figures 345 

Supplemental Figure S1 346 

 347 
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Figure S1. Quality control of the population distributions and DNA methylation data. A, The 348 

top genotype principal components (PC1 and PC2) exhibit that NSPT samples represents the 349 

genetic characteristics of East Asian populations. B, Histogram of age distribution for NSPT, 350 

CAS, and Changfeng (CF) samples. C, The scatter plot demonstrates the consistency between 351 

NSPT and CAS in terms of the mean and variance of DNA methylation of CpGs. D, The 352 

scatter plot illustrates the consistency of mean and variance of DNA methylation between the 353 

Changfeng (CF) baseline and follow-up. 354 

 355 

  356 
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Supplemental Figure S2 357 

 358 

Figure S2. Benchmarking of epigenetic drift statistical methods. A, Method A (Liu et al.) 359 

exhibits an overly conservative type I error rate at the significance threshold of 0.05 under the 360 
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null hypothesis. B, Method B (Bergstedt et al.) exhibits an elevated type I error rate under the 361 

null hypothesis when artificial outliers are introduced. C, Method A (Liu et al.) shows the 362 

lowest power in a scenario where CpG variance is linearly correlated with the square of age. 363 

D, Method D (White method) shows the highest power in a scenario with a non-linear 364 

relationship between CpG variance and age. E, Method D identifies the most epigenetic drift-365 

CpGs in real DNA methylation data. 366 

  367 
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Supplemental Figure S3 368 

 369 

Figure S3. Enrichment of transcription factor binding motifs around negative drift-CpGs. 370 

Enrichment of transcription factor binding motifs around negative drift-CpGs. Volcano plots 371 

show motif enrichment in genomic regions flanking negative drift-CpGs, analyzed using (A) 372 

10 bp windows (±5 bp) and (B) 30 bp windows (±15 bp). Each point represents a unique 373 

transcription factor motif. The x-axis shows the fold change of the motif, and the y-axis 374 

indicates its statistical significance (-log₁₀(P)). The dashed line marks the Bonferroni-375 

corrected significance threshold (P = 2.8 × 10⁻⁴). The color of each point corresponds to its 376 

significance, while its size reflects the percentage of negative drift-CpGs that contain the 377 

motif. 378 

  379 
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Supplemental Figure S4 380 

 381 

Figure S4. Cell type-specific DNA methylation changes at epigenetic drift-CpGs during 382 

aging. A, DNA Methylation levels of CD4+ T cell-specific negative drift cg02035448 drifting 383 

with age. B, DNA Methylation levels of CD8+ T cell-specific positive drift cg25634742 384 

drifting with age. C, DNA Methylation levels of NK cell-specific positive drift cg18406106 385 

drifting with age. 386 

  387 
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Supplemental Figure S5 388 

 389 

Figure S5. Association between epigenetic drift and transcriptional alterations across 390 

immune cell types during aging. A, Mean expression changes linked to epigenetic drift with 391 
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age. B, Transcriptional noise changes linked to epigenetic drift with age. C-D, BASiCS-392 

identified transcriptional changes in CD4+ T cells for genes near drift-CpGs: mean expression 393 

(C) and overdispersion (D). The colors of CpG sites are divided based on the direction of 394 

drift-CpGs. Genes annotated by drift-CpGs are labelled by text. The asterisk indicates the 395 

epigenetic drift that is dependent on the CD4+ T cell type component. E-F, Upset plots 396 

showing cell-specific transcriptional mean (E) and noise (F) changes of drift-associated genes 397 

across lymphoid lineages (CD4+ T, CD8+ T, NK, B cells) and monocytes. G-H, Cell type-398 

specific mean ( G) and noise (H) changes for lymphoid populations. 399 

 400 

  401 
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Supplemental Figure S6 402 

 403 

Figure S6. Examples of DNA methylation changes at epigenetic clock- and drift-CpGs during 404 

aging.  405 

 406 

  407 
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Supplemental Figure S7 408 

 409 

Figure S7. Correlations between age-related epigenetic indicators and blood biochemical 410 

phenotypes. Residuals (EDS_POS~Horvath Clock) means that the correlation between 411 

positive EDS and blood biochemical phenotypes was additionally adjusted for the effect of 412 

Horvath aging score. Residuals (EDS_POS~Hannum Clock) means that the correlation 413 

between positive EDS and blood biochemical phenotypes was additionally adjusted for the 414 

effect of Hannum aging score. 415 

  416 
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Supplemental Figure S8 417 

 418 

Figure S8. Associations of EDS_POS with lipid metabolism, with and without epigenetic 419 

clock adjustment. Forest plots display effect sizes (with 95% confidence intervals) per unit 420 

increase of relevant scores on various lipid metrics. Associations shown are significant at 421 

FDR P < 0.05. Three models are presented: Unadjusted EDS_POS (red), EDS_POS adjusted 422 

for Hannum clock residuals (blue), and EDS_POS adjusted for Horvath clock residuals 423 

(green). A, Associations with HDL-related traits. B, Associations with LDL-related traits. C, 424 

Associations with IDL- and VLDL-related traits. D, Associations with lipid ratios. E, 425 
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Associations with lipid component percentages. F, Associations with other small metabolites 426 

and apolipoproteins.  427 
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Supplemental Tables 428 

Supplemental Table S1 429 

Table S1. Characteristics of the study populations (Supplemental_Table_S1.xlsx). 430 

Supplemental Table S2  431 

Table S2. Epigenetic clock effect of drift-CpGs (Supplemental_Table_S2.xlsx). 432 

Supplemental Table S3 433 

Table S3. DNA methylation drift-CpGs discovered in NSPT and replicated in CAS 434 

(Supplemental_Table_S3.xlsx). 435 

Supplemental Table S4 436 

Table S4. Drift-CpGs list composing EDS_POS (Supplemental_Table_S4.xlsx). 437 

Supplemental Table S5 438 

Table S5. Drift-CpGs list composing EDS_NEG (Supplemental_Table_S5.xlsx). 439 

Supplemental Table S6 440 

Table S6. Significant associations between epigenetic scores and lipid metabolism 441 

(Supplemental_Table_S6.xlsx). 442 

 443 

 444 
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