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Supplemental Notes
Study Cohorts, Data Provenance, and Ethics Statement

NSPT, CAS, and Changfeng cohorts have been established by our group and described
previously. All DNA methylation data analyzed in this study were obtained from publicly
accessible databases from previously published studies. Written informed consent was
obtained from all participants as part of the original studies, and each original study was
approved by the respective institutional review board. Detailed descriptions of the cohorts are

as follows:
National Survey of Physical Traits cohort (NSPT)

The NSPT cohort has been previously described in (Peng et al. 2024). This cohort consists of
3,538 Chinese individuals (mean age 50.2 years, 37.0% male). The original study was
approved by the Ethics Committee of Human Genetic Resources of the School of Life
Sciences, Fudan University, Shanghai (14117). Data are available at the National Omics Data
Encyclopedia (NODE, https://www.biosino.org/node) under accession number

OEZ00008120.
Chinese Academy of Sciences cohort (CAS)

The CAS cohort has been described in (Peng et al. 2024). This replication cohort includes
1,060 individuals, predominantly highly educated individuals in intellectual professions
(mean age 40.8 years, 59.7% male). The original study was approved by the Institutional

Review Board of Beijing Institute of Genomics and Zhongguancun Hospital (2020H020,
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2021H001, and 20201229). The data are available at OMIX (https://ngdc.cncb.ac.cn/omix/)

under accession code OMIX004333.

Shanghai Changfeng cohort (Changfeng)

The Changfeng cohort is a longitudinal study previously described in (Gao et al. 2010; Li et
al. 2024). The dataset includes 407 subjects with a median follow-up of 4 years. The original
study was approved by the Research Ethics Committee of Zhongshan Hospital, Fudan
University (No. 2008-119 and B2013-132). Data are available at NODE

(https://www.biosino.org/node) under accession number OEP00004768.

Genome-wide DNA Methylation Profiling and Quality Control

The methods for DNA extraction, bisulfite conversion, and genome-wide DNA methylation
profiling using the [llumina MethylationEPIC BeadChip for all three cohorts (NSPT, CAS,

and Changfeng) were detailed in their original publications (Li et al. 2024; Peng et al. 2024).

For the present study, we obtained the raw data and performed the following quality
control and processing steps. Raw .idat files were processed using minfi (for NSPT) or
ChAMP (for CAS and Changfeng) (Aryee et al. 2014; Morris et al. 2014). Quality control
excluded samples with unclear gender and probes with SNPs, sex chromosome location, or
high missingness. Missing values were imputed (impute.knn), Type-2 probe bias was
corrected using Beta-Mixture Quantile normalization (BMIQ), and batch effects were
adjusted using the ComBat function on M-values(Johnson et al. 2007; Teschendorff et al.

2013).
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Serum metabolomics

For this study, we used serum metabolomics data from 3,037 individuals from the NSPT
cohort (Lin et al. 2025), with the technical methods first reported in (Wu et al. 2021). Briefly,
serum metabolomics was performed on a 600 MHz NMR spectrometer (Bruker Biospin), and
data were quantified using Bruker's B..LISA™ and B.I.Quant-PS™ software. A total of 351
metabolite-related indicators were obtained through detection and calculation; we excluded
indicators with a >20% missing rate. Finally, 336 metabolite-related indicators from 3,037

individuals were used for further analyses.

Genotype data processing

The genotype data for 3,513 NSPT samples were previously generated and described in (Peng
et al. 2024). Briefly, samples were genotyped using the [llumina Infinium Global Screening
Array. After stringent quality control using PLINK, the data were phased with SHAPEIT3
and imputed with IMPUTE2 using the 1000 Genomes Project phase 3 reference panel(Purcell
et al. 2007; Howie et al. 2009; O'Connell et al. 2016). After post-imputation filtering,

8,603,582 high-quality SNPs were available for the analyses in this study.

Phenotype data processing

The physiological and blood biochemical phenotype data for the NSPT cohort were collected
and described in a previous publication(Peng et al. 2025). Briefly, physiological

measurements (e.g., height, weight, BMI, blood pressure) were taken on-site. Blood
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biochemical phenotypes were obtained from serum samples, and a Toshiba TBA-40FR
biochemical analyzer was used to measure 13 phenotypes, including ALT, AST, CHO,

CREA, DBIL, GLU, HDL, IBIL, LDL, TBIL, TG, UA, and urea.

Statistical analysis

White method for detecting epigenetic drift-CpGs

To identify epigenetic drift-CpGs with heteroscedasticity related to age, we improved upon

the two-step regression testing method based on White's heteroscedasticity test(White 1980).
Simulation benchmarking for heteroscedasticity testing of drift-CpGs

To evaluate the performance of existing heteroscedasticity testing methods in detecting

epigenetic drift-CpGs, we simulated four different types of DNA methylation datasets:

Dataset 1 (Null model): To evaluate the Type I error rate, this dataset exhibited no
heteroscedasticity or outliers. It consisted of 3,000 ages permuted from the real data and

10,000 randomly selected CpGs from our quality-controlled data.

Dataset 2 (Null model with outliers): To test for robustness, this dataset included outliers
but no heteroscedasticity. It consisted of 3,000 ages permuted from the real data, with 10,000
simulated CpG values where the standard deviation was set to ten times the true standard

deviation.

Dataset 3 (Linear heteroscedasticity): To test power for linear effects, this dataset

simulated a linear relationship between CpG variance and age. It consisted of 3,000 ages
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permuted from the real data and 10,000 simulated CpG values where the age regression

coefficients for the variance of the residuals increased from 1 x 107 to 1 x 10,

Dataset 4 (Non-linear heteroscedasticity): To test power for complex effects, this dataset
simulated a non-linear relationship. For 3,000 ages permuted from the real data, the
regression coefficient for CpG residual variance was set to -1.0 x 10~ for ages < 45, the
variance was set to 1.0 x 1072 for ages between 45 and 55, and the coefficient was set to 1.0 x

10 for ages > 55.

We then tested the Type I error and statistical power for four existing methods on each

dataset:

Method A (DGLM): The Double Generalized Linear Model, using the dglm R

package(Liu et al. 2023)

Method B (Likelihood Ratio Test): The heteroscedastic likelihood ratio test, using the

gamlss R package(Bergstedt et al. 2022).

Method C (Breusch-Pagan Test): The Breusch-Pagan test for heteroscedasticity(Slieker

et al. 2016).

Method D (White Test): The White test, as described in this study(White 1980).

Finally, we evaluated the performance of the four methods based on the false-positive
rate (Dataset 1), the impact of outliers (Dataset 2), and the statistical power to detect linear

(Dataset 3) and non-linear (Dataset 4) heteroscedasticity.
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Epigenome-wide drift analysis: multi-scale functional characterization

To explore the correlation between DNA methylation variation and initial/terminal DNA
methylation levels, we presented the changes in epigenetic drift and methylation levels. DNA
methylation levels at significant drift-CpGs identified by our epigenome-wide drift analysis
were compared between young (mean - 2 standard deviations ) and old (mean + 2 standard
deviations) NSPT populations. A scatter plot was generated using initial methylation levels
from the younger group (x-axis) and terminal methylation levels from the older group (y-
axis), with points colored according to drift direction (positive or negative). Additionally,
heatmaps were constructed to visualize the density distributions of positive and negative drift-
CpGs across predefined methylation intervals ([0-0.05], [0.05-0.1], [0.1-0.9], [0.9-0.95],

[0.95-1]).

We applied the EpiDISH algorithm(Zheng et al. 2018) to estimate the proportions of
major blood cell types-myeloid cells (monocytes and neutrophils) and lymphoid cells (CD4"
T, CD8" T, NK, and B cells)-using DNA methylation profiles derived from blood plasma
samples. For each cell type, individuals were stratified into three groups based on their
estimated proportions: top 10% (high), bottom 10% (low), and middle 80% (intermediate) for
illustrative purposes. To assess cell-type-specific contributions to methylation drift, we
adapted the CellDMC framework (Zheng et al. 2018) to analyze significant drift-CpGs. For
each CpG, we modeled the interaction between age and estimated cell-type proportion on a
multiplicative scale, using the squared residual from a CpG ~ age regression as a quantitative

measure of drift. The resulting P-values reflected the specificity of age-dependent
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methylation drift across cell types.CpGs with Bonferroni-adjusted P-values < 0.05 were

considered to show statistically significant cell-type-specific drift.

To elucidate the contribution of age-related methylation drift to inter-individual

immune variation at single-cell resolution, we integrated population-scale epigenetic drift

profiles with single-cell transcriptomic data from peripheral blood mononuclear cells

(PBMCs) in the OneK 1K cohort (number of samples = 982, number of

cells=1,248,980)(Yazar et al. 2022). Specifically, we compared transcriptional dynamics

between individuals at the extremes of the age spectrum, defined as the youngest 1% and

oldest 1% of the cohort. Paired #-tests were used as a complementary approach to compare

overall gene expression and noise distributions across age groups and drift categories. In

addition, for each gene and for each immune cell type, we assessed age-associated changes in

both transcriptional levels and transcriptional noise using the BASiCS algorithm(Vallejos et

al. 2015). This method allowed us to simultaneously estimate changes in gene expression

means and cell-to-cell variability between the young and old groups. Analyses were stratified

by the direction of methylation drift (positive vs. negative drift-CpGs), enabling us to dissect

whether specific drift patterns are linked to altered expression magnitude or variability within

defined immune subpopulations.

We performed Transcription factor binding site (TFBS) enrichment analysis on drift-

CpGs. For each CpG site, genomic sequences from two windows, 10 bp (x5 bp) and 30 bp

(x15 bp), were extracted for analysis. TF enrichment was conducted using the TFmotifView

web tool (Leporcq et al. 2020) (https://bardet.u-strasbg.fr/tfmotifview/), which compiles motif
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information for 176 human transcription factors. Statistical significance was assessed using
Bonferroni correction, with an adjusted P-value threshold of <0.05 considered statistically

significant.

Epigenome-wide age-associated CpG analysis

To identify the age-associated CpGs, termed here as clock-CpGs, we used a linear model to
perform epigenome wide association analysis based on 469,061 CpGs in the NSPT cohort
with the same starting amount as EWDS. P value smaller than 1x107 (Bonferroni P < 0.05)
were considered as epigenome-wide significant. Covariates included gender, BMI, cell
composition, experiment batch, the first 5 genetic principal components and the first 5
epigenetic principal components. Genomic principal components (genomic PCs) were
calculated using PLINK 1.9 based on all genome-wide SNPs. For methylation principal
components (methylation PCs), we applied the prcomp function in R to the § values of

810,000 CpG sites across the genome.

Biological annotations

To provide biological annotation of the identified methylation sites, the CpGs were mapped
by referring to the manufacturer's manifest files (GRCh37 hg19 build). We aligned data to
GRCh37 (hgl9) because our Illumina methylation array probes are predominantly annotated
to this assembly. This also ensured consistency with vast public datasets. Given that most
gene associations are conserved across genome builds and our epigenetic drift analyses focus
on well-characterized genomic regions, we do not expect the use of a more recent assembly
(e.g., GRCh38) to significantly impact our biological conclusions. The genomic annotations

10
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contained: Enhancer (in FANTOMS project defined enhancer regions), TSS1500 (200-1500
bases upstream of the TSS), TSS200 (0-200 bases upstream of the transcriptional start site),
UTRS (within the 5' untranslated regions), 1stExon (the first exon), ExonBnd (within 20
bases of an exon boundary, i.e. the start or end of an exon), Body (gene body) and UTR3
(within a 3' untranslated region), Promoter (the union of TSS1500, TS200, 1stExon and 5'
UTR). The CpG island annotations included: N_Shelf (upstream 2-4 kb from CpG islands),
N_Shore (upstream 0-2 kb from CpG islands), Island, S_Shore (downstream 0-2 kb from
CpG islands) and S_Shelf (downstream 2-4 kb from CpG islands). Odds ratio was calculated

as follows:

N¢/(Narife — N)

Odds Ratio =
Nwhole_f/(N - Nwhole_f)

N is the total CpG number, Nypore 5 is the CpG in N which were located in the
functional region, Ngyf¢ is the drift-CpG number, N is the CpG in Ngyir; Which were

located in the functional region.

To explore the functional differences of different types of drift and clocks, we conducted
relative enrichment analysis of chromosome states and gene regions separately for positive
and negative drift, as well as positive and negative clocks. Finally, we assessed the

significance using a hypergeometric test with a significance threshold of 0.05.

Replication analysis

Drift-CpGs significant in the discovery analysis (Bonferroni threshold P <1x107) were

followed up with a replication analysis in CAS data based on White method. Next, to examine

11
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the reliability of drift-CpGs in other ancestral populations, we extracted methylation sites
from European-derived methylation data that significantly overlapped with CAS validation.
Furthermore, we used the White method to validate the drift-CpGs using the GSE40279
dataset, which includes a mixed population of 426 Caucasian and 230 Hispanic individuals,
assessed with a 450K beadchip, and with an age range of 19-101(Hannum et al. 2013).

In the replication analysis of the longitudinal Changfeng population, 410,440 CpG sites
were retained that matched with NSPT. The delta beta between the two time points was
calculated for each CpG site, and then the average delta beta at the individual level was
computed. Five samples were excluded, which had individual mean delta beta values
exceeding 3 standard deviations from the mean, resulting in 402 remaining samples used for
further analysis. The CpG drift value between the two stages was calculated for each CpG site
using the following formula:

CPGariftins = (CPGins — CPGyspri)?

Here, i refers to CpG site, n refers to sample, and s refers to stage. A paired ¢-test was

performed on the CpG-drift values for the two stages and a significance threshold of P < 0.05

was used.

Finally, we investigated the stability of drift in a twin cohort using the GSE61496
dataset, which comprised 150 pairs of MZ twins assessed with a 450K beadchip, with 78 pairs
being male and 72 pairs being female twins, and with an age range of 30-74 (Tan et al. 2014).
We extracted methylation sites from the twin methylation data that significantly overlapped

with CAS validation and then fitted a linear regression model to the absolute difference in age

12
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and twin pair values. Drift-CpGs with a P < 0.05 and an effect direction consistent with the

discovery analysis were considered successful replications.

Construction of epigenetic drift score (EDS)

To construct an EDS that quantifies an individual's level of positive epigenetic drift, we began
by selecting drift-CpGs as representatives of the overall epigenetic drift status in an
individual. First, we selected the NSPT-significant drift-CpGs (P < 1x107) that are also CAS-
replicated drift-CpGs (P < 5x10%) and Hannum-replicated drift-CpGs (P < 5x107?) to ensure
that all selected drift-CpGs are robustly replicated. Then, we calculated the Fisher combined
P-values for the significantly associated drift-CpGs from these three cohorts and removed all
CpGs within a 500-kilobase pair distance of the region's most significant drift-CpG in any
genomic region, resulting in a set of 2,069 independent and informative drift-CpGs.
Subsequently, we computed the variability of the chosen drift-CpGs and quantified an
individual's drift status by aggregating the age-correlated weighted variances. The score for
each drift site was computed as s;; = (B;j — [?])2 /SD;, where s;; denotes the drift
magnitude for individual i at site j, §;; is the methylation level for individual i at site j, I3 ;18
the mean methylation level at site j, and SD; is the standard deviation of methylation at site /.
A non-negative least squares regression between each site's drift score s;; and the age of the
individual y; was then performed, y; = 8¢; + &1;5;; , where &y is the intercept term and
1) is the regression coefficient reflecting the correlation between drift score and age. This
step of non-negative least squares regression ultimately selected 204 CpG sites with non-zero

coefficients for constructing the positive epigenetic drift score. The overall positive epigenetic

13
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drift score s; for individual i was calculated by summing across all ~=204 drift sites,
weighted by the regression coefficient, s; = Z;?:l 81js;j - Here the weighting factors derived
from the regression on the NSPT and Hannum cohorts are used as a standard reference for
calculating positive epigenetic drift score in other cohorts without the need for re-estimation.
For normalization, we adapted the range normalization method to make positive epigenetic
drift score comparable across populations that were not part of the initial NSPT and Hannum
cohorts. We linearly transformed the individual drift score s; to a range between 0 and 1.
This was done using the NSPT and Hannum cohorts as reference populations to anchor the
minimum and maximum possible drift scores, denoted as min(s;) and max(s;), projected at
ages 0 and 120 years respectively. The normalized positive epigenetic drift score

si— min(s;)

(EDS_POS) S; for individual i is calculated as S; =

max(s;)-min(s;)’

For individual's level of negative epigenetic drift, we directly used the drift scores of all
significant drift-CpGs from NSPT and construct a non-negative least squares regression
model. Ultimately, we obtained 81 negative drift sites with non-zero coefficients for the
construction of the negative epigenetic drift score (EDS_NEQG), and the scores were range

standardized to a scale of 0-1 for ages 0-120.

We implemented an entropy-based approach adapted from (Scherer et al. 2020) to
measure individual-level DNA methylation variability using Illumina EPIC array-derived -
values. For each participant in the NSPT cohort, we computed genome-wide entropy
separately for positive and negative drift CpGs, using the Shannon entropy formula: H = -

2[p*loga(p+1x104)], where p represents the methylation B-value at each CpG site. We then

14
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evaluated the concordance between these individual entropy measures and population-level
epigenetic drift scores (EDS_POS and EDS_NEG) through Pearson's correlation analysis. In
the longitudinal Changfeng cohort, we assessed temporal changes in entropy measures
between baseline and 4-year follow-up using two-tailed paired #-tests, with statistical

significance defined as P < 0.05.

Assessment of the association between EDS and age

To assess the association between EDS and age, we first calculated the correlation between
EDS and age in the NSPT and CAS cohorts, and evaluated the differences in EDS distribution
among different gender groups. Next, to quantify the contribution of selected drift-CpGs to
the EDS, we calculated the correlation between the drift score and age as the number of
positive drift-CpGs increased from 1 to 204 and negative drift-CpGs increased from 1 to 81,
respectively. We then displayed the changes in the cumulative curve using R, with a step size

of 50 and 50 repetitions at each step..

To measure the association between EDS and published methylation-based age
indicators, we calculated the epigenetic age based on the Horvath and Hannum clocks (first-
generation clocks), Levine's phenotypic age (second-generation clock), and Dunedin's aging
rate (third-generation clock) using NSPT and CAS samples. We evaluated the Pearson's
correlation before and after adjusting for chronological age, with a significance level of P <

0.05. Finally, we displayed the results in a heatmap using the R package corrplot.

15



298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Association assessment of EDS and metabolome

To examine the impact of epigenetic drift on lipid metabolism, we conducted an association
analysis between EDS and lipidomic data in the NSPT cohort, which included both DNA
methylation data and lipidomic profiles. Based on the composition and concentration
indicators of 336 NMR-detected lipoprotein subfractions (including 176 measured values and
175 derived values), we performed linear regression analyses to examine the associations
between metabolic indicators and EDS, while adjusting for covariates such as BMI, age,
gender, and population. To determine statistical significance, we used FDR-adjusted P < 0.05
as the threshold. To compare the associations of the epigenetic drift scores and other
methylation indicators with metabolism, we separately assessed the significance of the
associations between the Horvath and Hannum clocks (first-generation clocks), Levine's
phenotypic age (second-generation clock), and Dunedin's aging rate (third-generation clock)

with metabolic indicators.

Finally, we visualized the effect sizes of significant metabolic traits through a forest plot
and displayed the correlations among metabolic traits using a heatmap. These visualizations

were generated using the R package forestplot.

GWAS analysis of EDS

To identify potential genes associated with epigenetic drift, we performed a genome-wide
association analysis of EDS using the NSPT samples, which had both DNA methylation data
and genomic data available. We employed linear regression models, implemented in PLINK

(Purcell et al. 2007), to examine the associations between EDS and SNPs. The models were

16



319  adjusted for covariates such as age, gender, and the top 10 principal components of the

320  genomic data. The significance threshold is P < 5x10®. Additionally, we utilized the

321  GCTA(Yang et al. 2011) software to estimate the heritability of EDS, providing insights into
322  the proportion of phenotypic variance that can be attributed to genetic factors. Finally, we

323  analyzed chromatin state changes during aging using Integrative Genomics Viewer (IGV),
324 leveraging hMSC data from GSE156409 (McCauley et al. 2021). The young group comprised
325  early-passage cells at population doubling (PD)12, while the old group consisted of late-

326  passage PD32 cells.

327 Published software

328  We utilized publicly available software, which can be requested using the following URLs: R

329  (V4.4.0, https://cran.r-project.org/)(R Core Team 2024); R package ggplot2 for visualization

330  (V3.5.1, https://cran.r-project.org/web/packages/ggplot2/index.html); R package diptest for

331  unimodality test (V0.77-1, https://cran.r-project.org/web/packages/diptest/index.html); R

332  package missMethyl for GO and KEGG pathway enrichment analyses (V3.13,

333  https://bioconductor.org/packages/3.13/bioc/html/missMethyl.html); R package poolr for

334  stringent Tippett test (V1.1-1, https://cran.r-project.org/web/packages/poolr/index.html); R

335  package corrplot for correlation visualization (V0.94, https://cran.r-

336  project.org/web/packages/corrplot/index.html); R package forestplot for effect sizes

337  visualization (V3.1.3, https://cran.r-project.org/web/packages/forestplot/index.html);

338  SHAPEIT3 for phasing (SHAPEIT3, https://jmarchini.org/shapeit3); IMPUTE2 for

339  imputation (IMPUTE version 2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html);

17
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341

342

343
344

PLINK for SNP data-processing (PLINK2.0, https://www.cog-genomics.org/plink/2.0);

GCTA for heritability calculation (V1.93.2 beta, http://cnsgenomics.com/software/gcta). IGV

for interactive genome visualization (IGV, https://igv.org/)
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Figure S1. Quality control of the population distributions and DNA methylation data. A, The

top genotype principal components (PC1 and PC2) exhibit that NSPT samples represents the

genetic characteristics of East Asian populations. B, Histogram of age distribution for NSPT,

CAS, and Changfeng (CF) samples. C, The scatter plot demonstrates the consistency between

NSPT and CAS in terms of the mean and variance of DNA methylation of CpGs. D, The

scatter plot illustrates the consistency of mean and variance of DNA methylation between the

Changfeng (CF) baseline and follow-up.
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359  Figure S2. Benchmarking of epigenetic drift statistical methods. A, Method A (Liu et al.)

360  exhibits an overly conservative type I error rate at the significance threshold of 0.05 under the
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367

null hypothesis. B, Method B (Bergstedt et al.) exhibits an elevated type I error rate under the
null hypothesis when artificial outliers are introduced. C, Method A (Liu et al.) shows the
lowest power in a scenario where CpG variance is linearly correlated with the square of age.
D, Method D (White method) shows the highest power in a scenario with a non-linear
relationship between CpG variance and age. E, Method D identifies the most epigenetic drift-

CpGs in real DNA methylation data.
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Figure S3. Enrichment of transcription factor binding motifs around negative drift-CpGs.
Enrichment of transcription factor binding motifs around negative drift-CpGs. Volcano plots
show motif enrichment in genomic regions flanking negative drift-CpGs, analyzed using (A)
10 bp windows (£5 bp) and (B) 30 bp windows (=15 bp). Each point represents a unique
transcription factor motif. The x-axis shows the fold change of the motif, and the y-axis
indicates its statistical significance (-logio(P)). The dashed line marks the Bonferroni-
corrected significance threshold (P = 2.8 x 107*). The color of each point corresponds to its
significance, while its size reflects the percentage of negative drift-CpGs that contain the

motif.
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Figure S4. Cell type-specific DNA methylation changes at epigenetic drift-CpGs during
aging. A, DNA Methylation levels of CD4" T cell-specific negative drift cg02035448 drifting
with age. B, DNA Methylation levels of CD8" T cell-specific positive drift cg25634742
drifting with age. C, DNA Methylation levels of NK cell-specific positive drift cg18406106

drifting with age.
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Figure S5. Association between epigenetic drift and transcriptional alterations across

immune cell types during aging. A, Mean expression changes linked to epigenetic drift with
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age. B, Transcriptional noise changes linked to epigenetic drift with age. C-D, BASiCS-
identified transcriptional changes in CD4" T cells for genes near drift-CpGs: mean expression
(C) and overdispersion (D). The colors of CpG sites are divided based on the direction of
drift-CpGs. Genes annotated by drift-CpGs are labelled by text. The asterisk indicates the
epigenetic drift that is dependent on the CD4" T cell type component. E-F, Upset plots
showing cell-specific transcriptional mean (E) and noise (F) changes of drift-associated genes
across lymphoid lineages (CD4" T, CD8" T, NK, B cells) and monocytes. G-H, Cell type-

specific mean ( G) and noise (H) changes for lymphoid populations.
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Figure S6. Examples of DNA methylation changes at epigenetic clock- and drift-CpGs during

aging.
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Figure S7. Correlations between age-related epigenetic indicators and blood biochemical

phenotypes. Residuals (EDS_POS~Horvath Clock) means that the correlation between

positive EDS and blood biochemical phenotypes was additionally adjusted for the effect of

Horvath aging score. Residuals (EDS_POS~Hannum Clock) means that the correlation

between positive EDS and blood biochemical phenotypes was additionally adjusted for the

effect of Hannum aging score.
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Figure S8. Associations of EDS_POS with lipid metabolism, with and without epigenetic
clock adjustment. Forest plots display effect sizes (with 95% confidence intervals) per unit
increase of relevant scores on various lipid metrics. Associations shown are significant at
FDR P < 0.05. Three models are presented: Unadjusted EDS POS (red), EDS POS adjusted
for Hannum clock residuals (blue), and EDS POS adjusted for Horvath clock residuals
(green). A, Associations with HDL-related traits. B, Associations with LDL-related traits. C,

Associations with IDL- and VLDL-related traits. D, Associations with lipid ratios. E,
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Associations with lipid component percentages. F, Associations with other small metabolites

and apolipoproteins.
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Supplemental Tables
Supplemental Table S1

Table S1. Characteristics of the study populations (Supplemental Table S1.xIsx).

Supplemental Table S2

Table S2. Epigenetic clock effect of drift-CpGs (Supplemental Table S2.xIsx).

Supplemental Table S3

Table S3. DNA methylation drift-CpGs discovered in NSPT and replicated in CAS

(Supplemental Table S3.xIsx).

Supplemental Table S4

Table S4. Drift-CpGs list composing EDS POS (Supplemental Table S4.xlsx).
Supplemental Table S5

Table S5. Drift-CpGs list composing EDS NEG (Supplemental Table S5.xlsx).

Supplemental Table S6

Table S6. Significant associations between epigenetic scores and lipid metabolism

(Supplemental Table S6.x1sx).
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