
SUPPLEMENTARY MATERIALS FOR: VERKKO2: INTEGRATING PROXIMITY LIGA-
TION DATA WITH LONG-READ DE BRUIJN GRAPHS FOR EFFICIENT TELOMERE-TO-
TELOMERE GENOME ASSEMBLY, PHASING, AND SCAFFOLDING

TABLE OF CONTENTS

Table S1
Table S2
Table S3
Table S4
Figure S1
Figure S2
Figure S3
Supplementary methods S1

1. TABLES

sheep chicken HG002 HG00733

Genome size (Gb) 2.7 1.1 3.1 3.1

Het Rate (%) 0.988 0.950 0.262 0.114

number of chrs (2n) 54 78 46 46

HiFi

N50 23,393 21,912 13,607 15,537

Total Bases (Gb) 213.33 109.35 198.30 183.05

ONT

Bases in reads >=100 kb (Gb) 105.09 17.75 95.60 170.84

Total Bases (Gb) 497.32 177.00 247.19 271.14

Hi-C

Total Bases (Gb) 65.19 116.46 125.87 198.95

Table S1. Information about datasets used for benchmarking. Heterozygosity level was esti-
mated with genomescope [1] using the HiFi reads, except for chicken, where genomescope
crashed on HiFi data. For that sample Hi-C Illumina reads were used for estimation. Heterozy-
gosity of the heterogametic samples (sheep, chicken, HG002) can be overestimated with this
tool.

1



Species T2T T2T Hamming Switch QV Missing Missing CPU Peak

scf ctgs error error genes genes (no sex chr) Hours Memory

Sheep

Verkko2 Hi-C 31 24 0.85% 0.58% 54.17 1.37% 0.06% 3725.80 206

Verkko2 trio 23 20 0.85% 0.95% 54.17 1.36% 0.06% 2897.02 203

Hifiasm Hi-C 17 16 0.86% 0.95% 57.25 1.37% 0.06% 4342.36 381

Hifiasm trio 20 19 0.85% 0.94% 57.46 1.36% 0.06% 4046.67 396

Verkko1 trio 20 15 0.85% 0.95% 55.85 1.36% 0.06% 7181.07 196

Chicken

Verkko2 Hi-C 34 21 0.58% 0.13% 45.13 3.12% 1.07% 870.31 84

Verkko2 trio 32 25 0.58% 0.13% 45.17 2.52% 0.47% 673.58 85

Hifiasm Hi-C 35 32 2.01% 0.33% 40.34 2.20% 0.15% 1252.55 202

Hifiasm trio 36 35 0.41% 0.34% 40.25 2.25% 0.20% 1268.15 203

Verkko1 trio 25 23 0.43% 0.30% 39.88 2.56% 0.49% 2150.19 69

HG002

Verkko2 Hi-C 40 21 0.39% 0.41% 53.87 1.61% 0.09% 1736.25 164

Verkko2 trio 32 22 0.38% 0.41% 53.89 1.60% 0.09% 1394.57 164

Hifiasm Hi-C 17 9 0.51% 0.47% 55.12 1.64% 0.13% 2347.53 325

Hifiasm trio 18 10 0.46% 0.48% 55.29 1.61% 0.11% 2330.15 328

Verkko1 trio 21 8 0.46% 0.50% 51.52 2.64% 1.13% 9794.19 165

HG00733

Verkko2 Hi-C 41 26 0.75% 0.79% 53.86 0.09% 0.09% 2112.23 165

Verkko2 trio 33 23 0.74% 0.79% 53.82 0.09% 0.09% 1518.56 165

Hifiasm Hi-C 22 14 2.73% 0.86% 56.63 0.10% 0.09% 2552.40 283

Hifiasm trio 23 15 0.81% 0.87% 56.52 0.10% 0.10% 2629.20 275

Verkko1 trio 19 11 0.78% 0.83% 51.97 0.62% 0.61% 8345.69 162

Table S2. Comparison of tested assemblers on human and non-human data on all metrics.
Scaffolds < 100 kb were discarded for all metrics. T2T scaffolds are scaffolds longer than 5 Mb
that contain telomeres (detected by seqtk telo) on both ends. Hamming error rate, switch error
rate, and QV were calculated with yak. Missing genes count were calculated with compleasm
v0.2.6 (haplotypes evaluated independently, average values reported). All assemblers were run
on the NIH Biowulf cluster. Best values for each metrics and sample are highlighted in bold.
Verkko2 Hi-C has the highest T2T scaffold count with the exception of chicken where it is two
less than the best. Verkko2 trio has the lowest runtime across all datasets, followed by Verkko2
Hi-C. While Verkko1 has the lowest memory usage, Verkko2 only modestly increases memory
while reducing runtime 2.5 − 7-fold.

2



Verkko2 Hi-C Verkko2 trio Verkko1 trio Hifiasm Hi-C Hifiasm trio

NA50 133.576 133.990 130.098 95.008 101.268

NA90 45.180 45.332 36.924 39.271 39.310

misassemblies 97 63 119 277 163

Genome fraction % 99.91 99.91 99.7 98.60 99.78

local misassemblies 216 214 550 816 420

mismatches per 100Kbp 0.43 0.41 1.33 2.96 1.06

indels per 100Kbp 0.77 0.75 0.92 1.28 0.87

N’s per 100 kbp 34.15 18.21 55.43 185.77 81.77

Table S3. QUAST accuracy evaluation of all tested assemblies on HG002 dataset, using HG002
genome release v1.1 as a reference. Scaffolds < 100 kb were discarded for all metrics. NA50
and NA90 are reported in Mb. Best values among all assemblers is highlighted in bold.

3



Sample T2T T2T Hamming Switch QV Missing Missing Missing Dup

ID ctg scf rate rate (no sex chr) № №

HG00621 18 36 0.41% 0.38% 57.00 1.72% 0.17% 473 187

HG00735 10 30 0.65% 0.71% 53.26 0.21% 0.20% 57 205

HG00741 18 43 0.66% 0.65% 57.19 0.17% 0.17% 48 198

HG01106 19 40 0.48% 0.37% 52.29 1.70% 0.17% 469 186

HG01175 24 38 0.74% 0.62% 56.17 0.20% 0.20% 56 193

HG01258 22 37 0.36% 0.40% 56.06 1.70% 0.17% 468 189

HG01891 28 38 0.53% 0.52% 57.28 0.16% 0.16% 44 189

HG01952 28 39 0.49% 0.51% 57.24 1.72% 0.19% 473 193

HG02148 14 38 0.73% 0.77% 57.23 0.25% 0.25% 69 214

HG02486 27 42 0.33% 0.36% 54.94 1.69% 0.16% 465 183

HG02559 26 45 0.52% 0.53% 54.67 0.16% 0.16% 45 185

HG02572 27 42 0.32% 0.38% 56.80 1.69% 0.16% 466 185

HG02622 21 37 0.76% 0.65% 53.74 0.16% 0.16% 44 190

HG02630 22 41 0.53% 0.66% 51.56 0.16% 0.16% 45 193

HG02886 20 39 0.62% 0.60% 50.94 0.19% 0.19% 52 195

HG03453 21 39 1.48% 0.65% 51.29 0.16% 0.16% 45 196

HG03540 21 42 0.62% 0.80% 49.82 0.18% 0.18% 49 187

Verkko2 Hi-C Median 21 39 0.53% 0.60% 54.94 0.20% 0.17% 56 190

Hifiasm yr1 Median 0 0 0.71% 0.61% 53.57 0.24% 0.23% 67 216

Table S4. HPRC Yr1 assembly metrics for Verkko2 Hi-C. T2T scaffolds are scaffolds longer than
5 Mb that contain telomeres (detected by seqtk telo) on both ends. Hamming error rate, switch
error rate, and QV were calculated with yak. Missing genes count were calculated with com-
pleasm v0.2.6 (haplotypes evaluated independently, average values reported for percentages).

4



2. FIGURES

5



Long, accurate reads 
>99% idy, >10 kbp

Ultra-long reads
>90% idy, >100 kbp

Haplotype markers
Trio, Hi-C, Strand-seq

Compressed & 
corrected reads

LA Graph

ULA Graph

Haplotype
Paths

MBG

Canu

GraphAligner

Haplotype
Consensus

I. Long-accurate read correction

IV. Gap closing

VII. Haplotype path reconstruction

VIII. Hi-C scaffolding

VI. Hi-C haplotype phasing

IX. Assembly post-processing

II. Repeat identification

Fig. S1. Verkko1 pipeline graphical representation, adapted from [2]. Stages modified in
Verkko2 are labeled with roman numerals and are described in the corresponding subsections
of Methods: I: Long-accurate read correction, II+III: Repeat identification and better assembly
for telomeres, IV: Gap closing, VI: Hi-C haplotype phasing, VII: Haplotype path reconstruction,
VIII: Hi-C scaffolding, and IX: Assembly post-processing.

6



Fig. S2. An example of two possible alignments of an ONT read to a gapped region of the
LA graph. The grapy nodes are homozygous and used by both haplotypes. The red and blue
nodes correspond to the maternally-inherited and paternally-inherited haplotype, respectively.
The paternally-inherited haplotype has a gap due to a coverage dropout in the LA data. The
correct alignment is represented by two solid black lines connected by a dash. The middle
part of the read sequences comes from a region absent in the LA graph and is represented by
dashed black line. The alignment to the alternate haplotype is represented by solid green line.
This haplotype does not have missing sequence in the LA graph. Although the alternate haplo-
type may have lower identity, it can have a higher score and be selected because it provides a
single alignment with more bases covered by the alignment and no gap penalties.

7



Fig. S3. Steps of Hi-C the phasing algorithm: a) Initial ULA assembly graph with two con-
nected components. b) The Hi-C Graph prior to any filtering. The thickness of edges corre-
spond to the number of Hi-C read pairs mapping to both nodes c) The MatchGraph, with align-
ment matches shown in blue. The arrow on the edges indicates best matches. For example an
arrow pointing from node x to node y to show that y is the best match for x. d) The filtered Hi-
C Graph. The MatchGraph edges are used to generate large negative weights (shown in blue).
Non-best edges (e.g. connecting the two components) are set to have a 0 value and are dropped
in this figure. Remaining Hi-C edges are shown in green.

Fig. S4. Hi-C contact maps for HG002 verkko2 hi-c assembly. Curationpretext [3] was used for
the map generation. Each haplotype was processed separately.

8



Fig. S5. Hi-C contact maps for chicken verkko2 hi-c assembly. Curationpretext [3] was used for
the map generation. Each haplotype was processed separately.

Fig. S6. Hi-C contact maps for HG00733 verkko2 hi-c assembly. Curationpretext [3] was used
for the map generation. Each haplotype was processed separately.

9



Fig. S7. Hi-C contact maps for sheep verkko2 hi-c assembly. Curationpretext [3] was used for
the map generation. Each haplotype was processed separately.

10



3. SUPPLEMENTARY METHODS

Supplementary methods S1

S1. Overlapper implementation details
The implementation of the overlapper uses a disk index to reduce memory use. To build the
index, the overlapper uses several temporary files: one temporary k-mer file and multiple temporary
hash files where the number of temporary hash files f is given as a parameter (default f = 16).
First all reads are iterated, minimizers are extracted, and their hashes and positions are stored
in the temporary k-mer and hash files, respectively. The hashes are divided into the temporary
hash files based on their values, with f temporary files placing the hash h into the h mod f ’th file.
Each temporary hash file is processed one at a time, where the occurrences of each hash value are
counted and any hashes appearing only once are discarded. Then, all hashes appearing at least
twice are assigned a unique incremental ID, with the first hash in the first file assigned ID = 0.
The assigned hash IDs are stored in memory as a hash table from k-mer hashes to IDs. Finally, the
temporary k-mer file is iterated to build the index file, where the hashes in the temporary k-mer
file are replaced with their IDs and the tuple of (ID, read, start, end) is stored in the index file.
Due to the read-by-read iteration when reading the k-mers, the k-mers in the index file will have
the k-mers of a single read in a contiguous block.

To find the overlaps between the reads, the index file is iterated in multiple batches. Each
batch inputs parameters batch count c and batch index i. The parameters are used to split the reads
into c equally large ranges, with the i’th range indexed and matched in one batch. To find the
overlaps, the index file is iterated and the k-mers of the reads in the indexed range i are stored in
memory. Then, the index file is iterated again and whenever a read in range x ≤ i is encountered,
all overlaps against the in-memory reads are computed and output. Since the k-mers of each read
are in a contiguous block, the k-mers of the matched reads do not need to be stored in memory
except for the single read currently being processed, and so the memory use is the index size
divided by c. The batch count parameter provides a time-memory trade-off, with more batches
requiring less memory but more passes through the index file. In total c batches are required to
find all overlaps.

11



REFERENCES

1. G. W. Vurture, F. J. Sedlazeck, M. Nattestad, et al., “GenomeScope: fast reference-free genome
profiling from short reads,” Bioinformatics 33, 2202–2204 (2017).

2. M. Rautiainen, S. Nurk, B. P. Walenz, et al., “Telomere-to-telomere assembly of diploid
chromosomes with verkko,” Nat. Biotechnol. pp. 1–9 (2023).

3. P. A. Ewels, A. Peltzer, S. Fillinger, et al., “The nf-core framework for community-curated
bioinformatics pipelines,” Nat. biotechnology 38, 276–278 (2020).

12


	Tables
	Figures
	Supplementary methods
	Overlapper implementation details


