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Supplemental Note S1: Limitations of the Silhouette Index for spatial

transcriptomics data

To assess the degree of separation between clusters, we calculated the Silhouette index (Rousseeuw 1987)

for Proust, GraphST, SpaGCN, and STAGATE using the CK-p25 mouse tissue dataset and human DLPFC

Visium SPG dataset. We chose this metric because it does not depend on the use of a “gold standard”

or “ground truth” (e.g., compared to Adjusted Rand index) and it is widely used in the field of single-cell

transcriptomics to evaluate unsupervised clustering algorithms. We found that while Proust results in the

highest Silhouette score compared to other existing algorithms in the human DLPFC Visium SPG dataset

(Supplemental Fig. S7B), it achieves the lowest score in the mouse dataset (Supplemental Fig. S7A).

However, we believe there are several important caveats to using this metric that limit its use here. First,

the Silhouette index is not designed for multi-omics data, it is designed for one data modality so how to

adapt it for multi-omics data is unclear. Secondly, the Silhouette index is not well-suited for spatial omics

data, as it treats observations as independent and ignores the local spatial relationships between them.

This means that the index does not account for the spatial context that is often critical in understanding

biological patterns within spatial omics data. Additionally, STAGATE yields the highest Silhouette score

while detecting regions with the least biological sense compared to other methods in the mouse dataset

(Supplemental Fig. S2). In this way, we argue that the results we calculated using the Silhouette index

are di!cult to interpret and motivate an urgent need to develop alternative quantitative metrics to evaluate

spatial multi-omics clustering algorithms.
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Supplemental Note S2: Computation time and memory usage

To evaluate Proust’s computational e!ciency, we measured its processing time and peak GPU memory

usage at each stage of the deep learning model. In each dataset, Proust exhibits variability in processing

time, with the CNN image processing stage typically taking longer than the subsequent GNN-based stages

(Supplemental Fig. S16A) due to the intensive computations required for extracting features from

high-dimensional image data. Similarly, GPU memory usage is higher during image processing because

of the large input sizes; however, it remains manageable for most applications. Although processing time

and memory usage depend on the number of input channels, the performance remains within a practical

range (Supplemental Fig. S16B). For instance, the CNN stage takes an average of 44.12 seconds for the

Visium SPG DLPFC dataset with five channels, compared to 20.51 seconds for the Visium SPG mouse

dataset with two channels. In contrast, the GNN Gene and GNN Image stages are less sensitive to changes

in channel number.

Supplemental Fig. S16C compares the total computation time and peak GPU memory usage

between Proust and GraphST for all samples. GraphST (mean time: 23.95 seconds; mean peak GPU:

521.97 MB) outperforms Proust (mean time: 101.91 seconds; mean peak GPU: 606.52 MB) primarily

due to Proust’s additional image preprocessing using CNNs and GNN-based feature extraction. Despite

these extra steps, Proust’s resource demands remain manageable, largely because a significant portion of

the processing time is devoted to reading large raw .ti” image data. Overall, while Proust requires more

resources than some alternative methods, its requirements are feasible for most research needs, especially

in high-performance computing environments with job requests under 5 GB per sample.
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Supplemental Note S3: Ablation study

We performed an ablation study comparing Proust against three baseline methods to evaluate its ef-

fectiveness: a simple PCA-based dimensionality reduction (first baseline), a GCN autoencoder without

contrastive self-supervised learning (CSL) (second baseline), and a GCN autoencoder without the CNN

preprocessing step (third baseline). All methods follow the same preprocessing steps for gene expression

and image data as outlined in Sections Spatially-resolved gene expression preprocessing and Image feature

extraction. The outputs are subsequently processed using the clustering steps described in Section Clus-

tering and refinement. As shown in Supplemental Fig. S17B, Proust consistently achieves higher ARI

scores across all samples in the Visium SPG DLPFC dataset, reflecting improved clustering performance

relative to the baselines. Supplemental Fig. S17A further demonstrates that Proust produces spatially

coherent clusters that better correspond with manual annotations and underlying tissue structures. Al-

though the CNN preprocessing step may result in a minor loss of information, this loss is negligible because

our primary focus is on capturing broad spatial patterns and protein distributions in IF images that com-

plement the ST data. The lower ARI scores observed in the baseline underscore the value of the CNN step

in retaining relevant information for spatial domain detection while reducing noise and processing time.

Moreover, the incorporation of contrastive self-supervised learning aggregates neighboring information ef-

fectively, enhancing the representation of local spatial context and improving the delineation of adjacent

clusters. Overall, these results highlight the benefit of incorporating graph-based CSL and CNN image

preprocessing to refine the latent space representation for more accurate spatial domain discovery.
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Supplemental Note S4: Adjustment of modality weights

The “weighting” in Proust refers to how many principal components (PCs) are used for each modality,

which directly controls the relative contribution of gene expression and image data to the hybrid profile

for clustering. By default, we selected the top 30 PCs for gene expression to retain the most signifi-

cant features—capturing about 80% of the variance (Supplemental Fig. S18A), in line with common

practice—and the top 5 PCs for image data, which account for over 90% of the variance and su!ce to

capture broad spatial patterns as supplementary information in this specific analysis. As shown in Sup-

plemental Fig. S18B, reducing gene PCs to 5 causes a marked drop in ARI due to a considerable loss of

nuanced information compared to the default setting. Additionally, ablation experiments using only gene

PCs at various depths (Supplemental Fig. S18C) consistently underperform the full multimodal Proust

framework, underscoring the value of integrating CNN-processed image features.

We also demonstrated Proust’s flexibility in Fig. 4D by using the top 10 PCs from both recon-

structed gene expression and reconstructed Aω/pTau image features to up-weight pathology-related signals

compared to the default setting. The results show that Proust can detect disease-associated spatial do-

mains in addition to canonical cortical layers by adjusting the number of PCs for each data modality and

highlight how Proust can be tailored to di”erent biological contexts.

Lastly, we recognize the challenge of selecting appropriate weights between di”erent data modalities,

as this is a user-defined parameter in Proust. Users can adjust the weights assigned to gene expression

and protein information depending on the amount of information they want each modality to contribute

to the clustering results. However, they may find it challenging to determine the exact weights to assign

to each modality, especially when there is no manual annotation or ground truth available for reference.

To address this, Proust provides default values for the number of PCs used for each modality, which have

shown to work well across a range of datasets, while also allowing users to adjust these settings according

to their needs. We also o”er the option for users to specify how much variance they wish to capture from

each modality, and the algorithm will automatically determine the appropriate number of PCs accordingly.
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Supplemental Note S5: Design choices and novelty in Proust

Choice of CNN-based autoencoder

Several recent spatial omics tools first learn compact image representations with CNN autoencoders before

integrating them with other biological data types. For instance, STACI (Zhang et al. 2022) applies a

variational CNN to chromatin images and then fuses those embeddings with transcript counts, ConGI

(Zeng et al. 2023) uses a DenseNet121 backbone (pre-trained on ImageNet) to extract morphological

features from histopathology patches, and Yang et al. (Yang et al. 2021) process multi-channel single-cell

images through a CNN autoencoder to enable cross-modality translation. In Proust, we adopt a lightweight

CNN that encodes each immunofluorescence channel at the spot level to reduce dimensionality, smooth

out high-frequency pixel noise, and capture broad patterns of protein distribution. The aim is to highlight

general changes in protein distribution, o”ering complementary insights alongside spatially-resolved gene

expression data. The resulting per spot feature vectors concisely summarize image context and serve as

inputs to our subsequent graph-based stages.

Mean squared error for reconstruction

In our model, we employ mean squared error (MSE) as the reconstruction loss in both the CNN and

GNN autoencoders because it directly penalizes large deviations between the original and reconstructed

inputs. By averaging squared di”erences across all feature dimensions, MSE ensures that high-intensity

regions, where important protein signals reside, are faithfully reconstructed while still preserving overall

structure. We normalize each channel’s inputs via min–max that is consistent with the gene expression

data to prevent extreme intensity values from dominating training, stabilize the scale of reconstruction

errors, and enable the network to learn balanced representations across both bright and dim regions.

Nonlinear multimodal fusion vs. linear factor models

Among the various strategies for spatial transcriptomics analysis, linear latent factor methods (e.g.,

MEFISTO (Velten et al. 2022) and NSF (Townes and Engelhardt 2023)) decompose data into interpretable

factors with Gaussian-process regularization, while graph-based deep learning frameworks learn hierarchi-

cal, nonlinear embeddings directly from processed features. For instance, MEFISTO and nonnegative

spatial factorization (NSF) decompose data via linear combinations of latent factors, whereas Proust’s

core is a deep, nonlinear graph convolutional autoencoder paired with contrastive self-supervised learning.
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This design lets us learn hierarchical, nonlinear mappings from spatial transcriptomics data and CNN-

derived image features that can be combined into a hybrid profile so that spatially adjacent (or biologically

similar) spots cluster tightly. Crucially, Proust uniquely integrates both embeddings from immunofluores-

cence (IF) or histological images and transcriptomic data: the CNN step distills broad protein-distribution

patterns, and the GCN layers then refine these alongside gene expression by aggregating information from

neighboring spots. This nonlinear, multimodal fusion enables Proust to perform a comprehensive analysis

of intricate spatial domains using transcriptomic information and imaging-based protein channels, which

linear GP- or NMF- based approaches and other deep learning methods do not inherently support.
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Figure S1: Contrastive self-supervised learning. Contrastive self-supervised learning is illustrated in this figure,
demonstrating the refinement of latent representations during training of a graph-based autoencoder model. In the data
augmentation step, biological features are randomly shu!ed while preserving the distance-based graphs connecting each
observation. Real and corrupted local representations are then summarized from these two sets of graph structures using
a read-out function. A discriminative score for each pair of spot-patch representations is calculated during each iteration,
comparing the spot-level latent embeddings with the summarized local context, respectively.
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Figure S2: IF staining images of εH2AX protein (first column) and the spatial domains detected by

Proust, GraphST, SpaGCN, and STAGATE using cluster number k=20 on the Visium SPG CK-p25

mouse coronal brain tissue dataset.
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Figure S3: Clustering results of Proust on the Visium SPG CK-p25 mouse coronal brain tissue

dataset using cluster number k = 18 - 22.
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Figure S4: Expression level of reactive microglia marker genes on the Visium SPG CK-p25 mouse

coronal brain tissue slide replicate 3. Boxplots of Cst7, H2-d1, Lgals3bp, and Lpl expression level grouped

by clusters identified by Proust, GraphST, SpaGCN, and STAGATE. Hippocampus regions are depicted in orange;

other regions are depicted in grey.
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Figure S5: IF images of five cell-type channels (DAPI, GFAP, NeuN, OLIG2, and TMEM119) from

four Visium SPG human DLPFC samples.
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Figure S6: Manual annotations and clustering results from six methods on the Visium SPG human

DLPFC samples.
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Figure S7: Silhouette scores of Visium SPG CK-p25 mouse tissue dataset and Visium SPG human

DLPFC dataset. (A) Boxplot of Silhouette scores for Proust, GraphST, SpaGCN, and STAGATE on Visium SPG

CK-p25 mouse tissue dataset. (B) Boxplot of Silhouette scores for Proust, GraphST, SpaGCN, and STAGATE on

Visium SPG human DLPFC dataset.
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Figure S8: Stacked violin plots of known marker genes across clusters generated by Proust for four

Visium SPG human DLPFC samples. Selected marker genes for each layer are boxed.
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Figure S9: Violin plots to compare marker gene distributions within clusters identified by Proust

and manual annotations of four Visium SPG human DLPFC samples.
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Figure S10: Comparison of marker gene expressions among manual annotation, Proust, and GraphST

on Visium SPG human DLPFC samples. (A) Left: stacked violin plots of marker genes across clusters generated

by Proust and GraphST for the Visium SPG human DLPFC Br6432 sample. Right: Violin plots to compare the

distribution of HPCAL1 within clusters identified by manual annotations, Proust, and GraphST of the same sample.

(B) Left: clustering results from Proust and GraphST on the Visium SPG human DLPFC Br2720 sample. Right:

Violin plots to compare the distribution of MOBP within clusters identified by manual annotations, Proust, and

GraphST of the same sample.
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Figure S11: IF images of five protein channels (DAPI, Aω, pTau, GFAP, and MAP2) from selected

Visium SPG human inferior temporal cortex samples.
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Figure S12: Proust clustering results of the Visium SPG human inferior temporal cortex samples,

using five protein channels in Proust. Proust clustering results of seven Visium SPG human inferior temporal

cortex samples, using five protein channels (DAPI, Aω, pTau, MAP2, and GFAP), top 30 PCs from reconstructed

gene expression, top 5 PCs from reconstructed extracted image features, and k = 7 clusters in Proust.
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Figure S13: Proust clustering results of the Visium SPG human inferior temporal cortex samples,

using two protein channels. Proust clustering results of seven Visium SPG human inferior temporal cortex

samples, using two protein channels (Aω and pTau), top 10 PCs from reconstructed gene expression, top 10 PCs

from reconstructed extracted image features, and k = 7 clusters in Proust.
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Figure S14: Proust clustering results of 12 Visium human DLPFC samples that contain H&E images.
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Figure S15: PCA plots of the first two principal components for sample 151509 and 151674 from

the Visium human DLPFC dataset.
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Figure S16: Boxplots of computation time and memory usage across datasets and competing meth-

ods. (A) Boxplots of computation time (in seconds) and peak GPU memory usage (in MB) for Proust at each stage

of the deep learning process across four di”erent datasets (VSPG DLPFC, H&E DLPFC, VSPG mouse, and VSPG

AD). (B) Comparison of computation time and peak GPU memory usage across three stages of Proust as a function

of the number of input channels (1 to 6) on sample Br6522 in the Visium SPG DLPFC dataset. (C) Comparison of

total computation time and peak GPU memory usage between Proust and GraphST.
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Figure S17: Comparison of Proust with three baseline methods (1) PCA-based dimensionality re-

duction and (2) Proust without contrastive self-supervised learning (3) Proust without CNN on the

Visium SPG DLPFC dataset. (A) Spatial domain assigned by Proust and baseline methods. (B) Boxplot of

clustering accuracy of Proust and three baselines based on adjusted rand index (ARI).
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Figure S18: Analysis results with di!erent modality weights on the Visium SPG DLPFC sample

Br2720. (A) Cumulative explained variance by the number of principal components for transcriptomics and IF

image reconstructed features. (B) ARI comparison with top 5 PCs vs top 30 PCs for transcriptomics in Proust.

(C) ARI across di”erent numbers of PCs for transcriptomic data using a gene-only model in Proust.
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