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Supplemental Table S1. Summary of datasets used for evaluating compression methods. Note: Ex-zd 3-bit reduction refers to an 
8-bit encoding for PromethION datasets (where native encoding is 11-bit) and 10-bit encoding for MinION datasets (where native 
encoding is 13-bit). 

 
  

Dataset Device Kit Pore 

Data 
rate 

(kHz) 
Reads 

(millions) 

Ave 
read 

length 
(kb) 

Total seq. 
(Gbases) / 

Genome cov. 

FASTQ 
gzip 
(GiB) 

POD5 
VBZ 
(GiB) 

BLOW5 
VBZ 

lossless 
(GiB) 

BLOW5 
ex-zd, 

lossless 
(GiB) 

BLOW5 
ex-zd 3-bit 
reduction 

(GiB) 

HG002-Prom5K PromethION LSK114 10.4.1 5 18.8 6.9 131 / 42x 119.2 1661 1659 1622 924 

HG002-Prom5K 
(Chr22 subset) 

PromethION LSK114 10.4.1 5 0.2 6.9 0.9 / 42x 0.8 9.9 9.9 9.7 5.5 

HG002-Prom4K PromethION LSK114 10.4.1 4 15.3 6.7 102 / 33x 96 1075 1073 1041 609 

HG002-Prom4K 
(Chr22 subset) 

PromethION LSK114 10.4.1 4 0.2 6.7 1.6 / 33x 1.4 14.2 14.1 13.7 8.0 

HG002-Min5K MinION LSK114 10.4.1 5 2.7 2.9 7.9 / 2.5x 7.5 113.7 113.6 111.6 63.5 

UHRR-Prom PromethION RNA004 RP4 4 15.4 1.1 17.6 / NA 16.6 549 549 539 318 

UHRR-Prom 
(500K read 
subset) 

PromethION RNA004 RP4 4 0.5 1.1 0.6 / NA 0.5 16.8 16.7 16.4 9.7 

SIRV-Min MinION RNA004 RP4 4 0.03 0.99 .028 / NA 0.0211 0.6617 0.6608 0.6527 0.3792 

HG001-PromR9 
(Chr22 subset) 

PromethION LSK109 9.4.1 4 0.1 15 1.5 / 31x 1.2 11.1 11.1 11.1 6.0 

UHRR-PromR9  
 

PromethION RNA002 9.4.1 3 1 1.2 1.2 / NA 1.2 60.4 60.3 60.1 33.1 
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Supplemental Table S2. Definitions of lossless compression methods evaluated for compression of nanopore signal data. See 
Figure 1 for a comparison of compression ratios achieved by different methods and their combinations. 

 
Comp. method          Description 

^_* apply * then ^ 

bzip2 bzip2 with compression level 9 

ex-zd see Methods 

fast_lzma2 Fast LZMA2 with compression level 6 

flac_P11 FLAC with 12 bits per sample, sampling rate 4000, compression level 5 and one channel 

huffman huffman on the one-byte data 

none no compression 

shuffman huffman but use a pre-built table 

submin subtract the minimum 

svb StreamVByte: integers are binned into 1,2,3 and 4 bytes 

svb0124 svb but integers are binned into 0,1,2 and 4 bytes 

svb12 svb but integers are binned into 1 and 2 bytes 

uint bitpacking 

vb1e2 write the one-byte data followed by two-byte data 

vbbe21 vbe21 but minimally bitpack the position deltas and data 

vbe21 write the two-byte data followed by one-byte data 

vbse21 vbe21 but svb encode the position deltas and minimally svb12 encode the two-byte data 

zd apply the zig-zag delta transformation 

zlib zlib with the default compression level 

zsm subtract the mean and apply zig-zag transformation 

zstd Zstandard with compression level 1 
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Supplemental Table S3. Use of computational resources for lossless compression methods. 

Values indicate the time and memory required to decompress then re-compress a typical ONT dataset (HG002-Prom5K; see 
Supplemental Table S1). For each compression type, decompression and compression were performed together using slow5tools 
view with 40 threads, and the total execution time and the peak RAM usage were measured (the compression type of the input 
BLOW5 and the output BLOW5 was the same). 

 

Compression Method Time (hours) Memory Usage (GiB) 

zlib_svb_zd 4.15 5.12 

zlib_ex-zd 3.81 4.56 

zstd_svb_zd  2.97 4.85 

zstd_ex-zd  2.90 4.47 

zstd_svb12_zd  (VBZ) 2.72 4.41 
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Supplemental Table S4: Impact of ex-zd bit-reduction on basecalling accuracy for the dataset ‘HG002-Prom5K Chr22 subset’ (see 
Supplemental Table S1). Accuracy is assessed by mean and median read-to-reference identity scores. Note: basecalling models for 
Dorado 0.3.4 and Guppy 6.5.7 were stated to be equivalent in documentation from ONT. 

 

No. of bits 

Dorado 0.3.4  Guppy 6.5.7  

SUP HAC SUP HAC 

mean median mean median mean median mean median 

11 bit 0.9321 0.9839 0.9240 0.9751 0.9321 0.9839 0.9239 0.9749 

10 bit 0.9321 0.9839 0.9240 0.9750 0.9320 0.9839 0.9238 0.9748 

9 bit 0.9319 0.9837 0.9238 0.9748 0.9320 0.9838 0.9237 0.9746 

8 bit 0.9314 0.9831 0.9231 0.9739 0.9314 0.9831 0.9229 0.9738 

7 bit 0.9292 0.9805 0.9200 0.9701 0.9293 0.9806 0.9199 0.9699 

6 bit 0.8965 0.9377 0.8740 0.9089 0.8963 0.9378 0.8733 0.9080 

5 bit 0.7162 0.7159 0.7094 0.7024 0.7100 0.7031 0.7100 0.7031 
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Supplemental Table S6: Impact of ex-zd bit-reduction on 5mC profiling for the dataset ‘HG002-Prom5K Chr22 subset’ (see 
Supplemental Table S1). Methylation profiling assessed by Pearson correlation of 5mC frequencies at global CpG sites to matched 
wgBS data (on an HG002 reference sample). Note: basecalling models for Dorado 0.3.4 and Guppy 6.5.7 were stated to be 
equivalent in documentation from ONT. f5c was run using a model trained for 4KHz data, as a model for 5KHz is not yet available. 

 

No. of bits 
Dorado  0.3.4   Guppy 6.5.7  f5c 

SUP HAC SUP HAC 4kHz model 

11 bit 0.9264 0.9253 0.9282 0.9259 0.8707 

10 bit 0.9263 0.9255 0.9281 0.9260 0.8707 

9 bit 0.9265 0.9257 0.9280 0.9259 0.8703 

8 bit 0.9261 0.9254 0.9275 0.9256 0.8699 

7 bit 0.9266 0.9243 0.9267 0.9262 0.8690 

6 bit 0.9159 0.9050 0.9177 0.9054 0.8431 

5 bit 0.2842 0.4306 0.2399 0.3991 0.3053 
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Supplemental Table S7: Effect of ex-zd bit-reduction on basecalling and 5mC profiling for the dataset ‘HG002-Prom4K Chr22 
subset’ (see Supplemental Table S1). ‘Sequence’ indicates mean read-to-reference identity scores. ‘Methylation’ indicates 5mC 
frequency correlation with matched wgBS data (HG002 reference sample), similar to Supplemental Tables S4, S6. 

 

No. of bits 

Dorado 0.3.4  

SUP HAC 

Sequence Methylation Sequence Methylation 

11 bit 0.9042 0.9433 0.8961 0.9425 

8 bit 0.9037 0.9435 0.8955 0.9424 
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Supplemental Table S8: Effect of ex-zd bit-reduction on basecalling and 5mC profiling for the dataset ‘HG001-PromR9 Chr22 
subset’ (see Supplemental Table S1). ‘Sequence’ indicates mean read-to-reference identity scores. ‘Methylation’ indicates 5mC 
frequency correlation with matched wgBS data (HG001 reference sample), similar to Tables S4, S6. 

 

No. of bits 

Dorado 0.3.4  

SUP HAC 

Sequence Methylation Sequence Methylation 

11 bit 0.9105 0.9091 0.8968 0.9049 

8 bit 0.9010 0.8944 0.8853 0.8836 

 
  



 

9 
 

Supplemental Table S9: Effect of ex-zd bit-reduction on basecalling for the dataset ‘HG002-Min5K’ (see Supplemental Table S1). 
Values indicate mean read-to-reference identity scores. 

 

No. of bits 
Dorado 0.3.4  

SUP HAC 

13 bit 0.9456 0.9360 

10 bit 0.9443 0.9342 
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Supplemental Table S10: Effect of ex-zd bit-reduction on basecalling for the dataset ‘UHRR-Prom’ and ‘SIRV-Min’ (see 
Supplemental Table S1). Values indicate mean read-to-reference identity scores. 

 

No. of bits 

Dorado server 7.2.13  
(Dorado 0.4.0) 

 
Human mRNA (Prom.) 

SUP HAC 

11 bit 0.9579 0.9494 

8 bit 0.9567 0.9480 

No. of bits 

Dorado server 7.2.13  
(Dorado 0.4.0) 

 
Synthetic RNA (MinION) 

SUP HAC 

13 bit 0.9557 0.9328 

10 bit 0.9529 0.9249 
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Supplemental Note 1. Exploration of alternative compression methods on top of bit-
reduced data 

Because bit-reduced signal data has a different structure from native ONT data, we reasoned that different compression methods 
might exhibit different performances when applied after the bit-reduction process described in our study. To test this, we re-ran 
each of the lossless compression methods evaluated in Figure 1 (n = 44) on the same dataset (HG002-Prom5K Chr22 subset) but 
encoded with different numbers of bits; ranging from native 11-bit encoding down to 7-bit encoding. We re-calculated the 
compression ratio for each combination of bit-reduction and lossless compression methods and these are plotted below.

 

The methods in the plot above are presented in ascending order of the compression ratios for lossless compression (11-bit 
PromethION data). The top-performing compression algorithms for 11-bit lossless data achieve only slightly better compression 
ratios than others because lossless compression is nearing its theoretical limits, efficiently capturing all information content and 
reducing redundancy. However, we see relatively large differences between methods on bit-reduced (e.g. 7-bit) encodings. 
Particularly, the order of the compression ratios for 11-bit native data does not hold when applied to bit-reduced data.  For 
instance, on 7-bit data (4-bits reduced) zstd_flac_P11 (which uses Free Lossless Audio Codec (FLAC) designed for audio 
compression) was the best performer. Algorithms based on the DEFLATE framework (which combines Huffman coding and LZ77 
compression) like zlib and zstd also tend to perform well on bit-reduced data, likely due to their use of prefix codes being optimal 
on bit-reduced raw signal data. Applying DEFLATE techniques on top of zigzag delta encoding (which encodes and stores the 
differences between consecutive data points in the data series), performs further well with lossy bit manipulation. This is because 
the differences are more repetitive due to the bit-reduction.  

This analysis shows that different compression strategies may be preferable for the compression of bit-reduced data, compared 
to those for compression of native 11-bit data. While some lossless methods do not provide better compression ratios for bit-
reduced data than the original unaltered data, removing more bits improves the compression ratio for most methods.  Overall, 
this analysis indicates there are significant additional compression gains that may be obtained by applying alternative compression 
strategies, such as FLAC, on top of bit-reduced data. This subject warrants further exploration. 
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Supplemental Note 2. Mathematical comparison between the size of ex-zd and svb12-zd   

When the number of exceptions is greater than one, the number of data points must be greater than 185 and the 
proportion of exceptions must be less than 0.028 for ex-zd to consume fewer bytes than svb12-zd. When there are no 
exceptions, the number of data points must be greater than 121; when there is only one exception, the number of data 
points must be greater than 169. For a PromethION DNA LSK114 5KHz dataset (HG002-Prom5K; see Table S1) with ~22 
million reads, the mean proportion of exceptions per read was found to be 0.020; the mean number of data points per 
read 93936; and according to these mathematical propositions ex-zd consumes fewer bytes than svb12-zd 89.2% of 
the time. 

Let Lz: N x N → N be the length in bytes of an encoding z given the number of integers n and the number of two-byte 
exceptions nx. Then, the length of svb12-zd is given by: 

 Lsvb12-zd(n, nx) = ceil(n/8) + n + nx 

For ex-zd there are three cases: 

1. nx = 0: Lex-zd(n) = 16 + n 
2. nx = 1: Lex-zd(n) = 23 + n 
3. nx > 1: Lex-zd(n, nx) <= 23 + 2 ceil(nx/4) + 5nx + n 

Case 3 is a worst case upper bound which occurs when all the exceptions' positions' deltas are in the range [224, 232). 
For cases 1 and 2, Lex-zd is smaller than Lsvb12-zd when n > 121 and n > 169 respectively. For case 3: 

● 23 + 2 ceil(nx/4) + 5nx + n < ceil(n/8) + n + nx 
● 23 + nx/2 + 5nx + n < (n + 7)/8 + n + nx 
● nx < (n - 177)/36 

which implies that (for nx > 1) Lex-zd is smaller than Lsvb12-zd when n > 177 and nx/n < 0.028 (as n tends to infinity). In 
practice, for PromethION DNA data sequenced on kit LSK114 the expected number of integers is E[N] = 93936.3, the 
expected number of exceptions is E[Nx] = 1746.41 and the expected proportion of exceptions is E[Nx/N] = 0.020, 
which satisfies the conditions for Lex-zd < Lsvb12-zd and give the following expected space saving per read: 

 E[Lsvb12-zd - Lex-zd] >= E[(N - 177)/36 - Nx] > 858 bytes 

Note: these calculations are irrespective of the application of Zstandard. 
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Supplemental Note 3. Commands and versions used for experiments 

Size and Performance measurements 

# lossless conversion to the compression type ${REC_MTD}_${SIG_MTD} (e.g., REC_MTD=zstd, SIG_MTD=ex-zd) 
slow5tools view reads.blow5 -c ${REC_MTD} -s ${SIG_MTD} -o reads_${REC_MTD}_${SIG_MTD}.blow5 -t40 

# converting to POD5 
blue-crab s2p reads.blow5 -o reads.pod5 -p 40 

# lossy conversion eliminating $COUNT bits 
slow5tools degrade reads.blow5 -c ${REC_MTD} -s ex-zd -b $COUNT -o reads_${REC_MTD}_ex-zd_${COUNT}.blow5 -t40 

# measure size in bytes 
du -b <file> 

# measure time and RAM for decompressing and compressing to the same compression type 
clean_fscache #see https://github.com/hasindu2008/biorand/blob/master/clean_fscache.c 
/usr/bin/time -v slow5tools view reads_${REC_MTD}_${SIG_MTD}.blow5 -c ${REC_MTD} -s ${SIG_MTD} -o reads_tmp.blow5 -t40 

Versions: 
● for zlib+svb-zd, zlib+ex-zd, zstd+svb-zd and zstd+ex-zd: slow5tools 1.3.0 
● for zstd+svb12-zd: slow5tools vbz branch [https://github.com/hasindu2008/slow5tools/tree/vbz commit 

8a366bf6dffe0c94fd0ec148cca22f09e47c31e5]. Note: please use -s svb16-zd instead of  -s svb12-zd (same thing, 
different naming conventions) 

● blue-crab 0.1.0 

Accuracy Evaluation 

Lossy compression 

sigtk qts -b $COUNT --method=round reads_chr22.blow5 -o rounded_$COUNT.blow5 
# COUNT: 0, 1, 2, etc where it is the number of bits eliminated 

The data generated from the above command will be identical to that from the following slow5tools command: 

slow5tools degrade -b $COUNT reads_chr22.blow5 -o rounded_$COUNT.blow5 -c zlib -s svb-zd 

Versions: sigtk 0.2.0, slow5tools 1.3.0 

DNA basecalling 

# Guppy via buttery-eel  
buttery-eel -g ont-guppy/bin/ -x cuda:all --port 5000 --config <model_guppy> -i reads_chr22.blow5 -o reads_chr22.fastq 

# Dorado through slow5-dorado 
slow5-dorado basecaller <model_dorado> --emit-fastq reads_chr22.blow5 > reads_chr22.fastq 

# alignment 
minimap2 -ax map-ont hg38noAlt.fa --secondary=no reads.fastq -o reads.sam 

# identity scores 
samtools view -F 2308 -h reads.sam -o reads_primary.sam 
paftools.js sam2paf reads_primary.sam | awk '{print $1"\t"$10/$11} > primary_identity_scores.txt 
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Flowcell sampling_rate model type model_guppy model_dorado 

R10.4.1 

5 kHz 
super accuracy dna_r10.4.1_e8.2_400bps_5khz_sup.cfg dna_r10.4.1_e8.2_400bps_sup@v4.2.0 

high accuracy dna_r10.4.1_e8.2_400bps_5khz_hac_prom.cfg dna_r10.4.1_e8.2_400bps_hac@v4.2.0 

4 kHz 
super accuracy dna_r10.4.1_e8.2_400bps_sup.cfg dna_r10.4.1_e8.2_400bps_sup@v4.1.0 

high accuracy dna_r10.4.1_e8.2_400bps_hac_prom.cfg dna_r10.4.1_e8.2_400bps_hac@v4.1.0 

R9.4.1 4 KHz 
super accuracy dna_r9.4.1_450bps_sup_prom.cfg dna_r9.4.1_e8_sup@v3.3 

high accuracy dna_r9.4.1_450bps_hac_prom.cfg dna_r9.4.1_e8_hac@v3.3 

Versions: buttery-eel 0.4.1 through Guppy 6.5.7, slow5-dorado 0.3.4, minimap 2.26 

DNA variant calling 

# sort the alignments 
samtools sort reads_primary.sam -o reads.bam 
samtools index reads.bam 

# variant calling 
run_clair3.sh --bam_fn=reads.bam --ref_fn=hg38noAlt.fa --threads=32 --include_all_ctgs --platform="ont" --
model_path=<model_clair3> –output=clair3_out/ --enable_phasing --longphase_for_phasing --sample_name=reads 
 
# variant evaluation 
rtg vcfeval -b HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz -c clair3_out/merge_output.vcf.gz  -o out_rtg/ -t 
hg38noAlt.sdf --region chr22:1-50818468 -e HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed --vcf-score-field QUAL 
rtg rocplot out_rtg/snp_roc.tsv.g 

Flowcell sampling_rate model type model_clair3 

R10.4.1 5 kHz 
super accuracy r1041_e82_400bps_sup_v420 

high accuracy r1041_e82_400bps_hac_v420 

Versions: clair3 1.0.10, rtg 3.12.1 

DNA 5mC methylation calling 

# Guppy Remora 
buttery-eel -g ont-guppy/bin/ -x cuda:all --port 5000 --config <model_guppy> --call_mods -i reads_chr22.blow5 -o 
reads_chr22.sam 
 
# Dorado Remora 
slow5-dorado basecaller <model_dorado>  --modified-bases "5mCG_5hmCG" reads_chr22.blow5 > reads_chr22.sam 
 
# meth frequency for Remora 
samtools fastq -TMM,ML reads_chr22.sam |  minimap2 -x map-ont -a -y --secondary=no hg38noAlt.fa  - | samtools sort -@32 
- > reads_chr22_mapped.bam 
samtools index reads_chr22_mapped.bam 
modkit pileup --cpg --ref hg38noAlt.fa --ignore h reads_chr22_mapped.bam reads_remora.bedmethyl 
grep "chr22" reads_remora.bedmethyl | grep -v nan  > reads_remora_chr22.bedmethyl 

# f5c  
f5c call-methylation -x hpc-low -g hg38noAlt.fa -b reads_chr22_mapped.bam -r reads_chr22.fastq -w chr22 --slow5  
reads_chr22.blow -o reads_chr22.tsv 
f5c meth-freq -s -i reads_chr22.tsv -o freq_chr22.tsv 

# getting correlation and plots  based on compare_methylation.py and plot_methylation.R are available in f5c repository 
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python3 compare_methylation.py chr22_bi.tsv reads_remora_chr22.bedmethyl > bi_vs_remora.tsv 
R --no-save --args bi_vs_remora.tsv < plot_methylation.R 

# getting individual modification calls 
modkit extract reads_chr22_mapped.bam mods.tsv 

Flowcell sampling_rate model type model_guppy model_dorado 

R10.4.1 

5 kHz 

super accuracy dna_r10.4.1_e8.2_400bps_5khz_modbases_5mc_cg_sup_pro
m.cfg 

dna_r10.4.1_e8.2_400bps_sup@v4.2.0 

high accuracy dna_r10.4.1_e8.2_400bps_5khz_modbases_5mc_cg_hac_pro
m.cfg 

dna_r10.4.1_e8.2_400bps_hac@v4.2.0 

4 kHz 
super accuracy dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_sup_prom.cfg dna_r10.4.1_e8.2_400bps_sup@v4.1.0 

high accuracy dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_hac_prom.cfg dna_r10.4.1_e8.2_400bps_hac@v4.1.0 

R9.4.1 
 
 

4 KHz 
super accuracy dna_r9.4.1_450bps_modbases_5mc_cg_sup_prom.cfg dna_r9.4.1_e8_sup@v3.3 

high accuracy dna_r9.4.1_450bps_modbases_5mc_cg_hac_prom.cfg dna_r9.4.1_e8_hac@v3.3 

Versions: buttery-eel 0.4.1 through Guppy 6.5.7, slow5-dorado 0.3.4, f5c 1.4, minimap 2.26, modkit 0.1.13 

RNA  basecalling 

# Dorado server via buttery-eel 
buttery-eel -g ont-dorado-server/bin/ -x cuda:all --port 5000 --config <model> -i reads_500k.blow5  -o reads_500k.fastq 

# alignment 
minimap2 -ax map-ont -uf --secondary=no gencode.v40.transcripts.fa/ spike-in_transcripts.fa reads.fastq -o reads.sam 

# identity scores 
samtools view -F 2308 -h reads.sam -o reads_primary.sam 
paftools.js sam2paf reads_primary.sam | awk '{print $1"\t"$10/$11} > primary_identity_scores.txt 

 
Flowcell sampling_rate model type model 

RP4 4 kHz 
super accuracy rna_rp4_130bps_sup.cfg 

high accuracy rna_rp4_130bps_hac_prom.cfg 

R9.4.1 3 kHz high accuracy rna_r9.4.1_70bps_hac_prom.cfg 

Versions: buttery-eel 0.4.2 through ont-dorado-server 7.2.13 (equivalent to Dorado 0.4.0), minimap 2.26 

RNA  6mA methylation calling 

samtools sort reads_primary.sam -o reads.bam  
samtools index reads.bam 

f5c index reads.fastq --slow5 reads_500k.blow5  
f5c eventalign --reads reads.fastq --bam reads.bam -g gencode.v40.transcripts.fa --slow5 reads_500k.blow5 --scale-
events --signal-index --summary f5c_summary.tsv -o f5c.tsv --rna --kmer-model rna004.nucleotide.5mer.model --min-mapq 0 
 
m6anet dataprep --eventalign f5c.tsv --out_dir m6anet/ --n_processes 8  
m6anet inference --input_dir m6anet/ --out_dir m6anet/ --pretrained_model HEK293T_RNA004 --n_processes 8 --
num_iterations 1000 

Versions: f5c 1.4, m6anet 2.1.0 



0.75 0.80 0.85 0.90 0.95 1.00

0.75

0.80

0.85

0.90

0.95

1.00

0.75 0.80 0.85 0.90 0.95 1.00

R
ea

d:
re

f. 
id

en
tit

y 
/ B

LO
W

5 
fo

rm
at

 (1
1-

bi
t)

File format has no impact on basecalling outcomesB

R
ea

d:
re

f. 
id

en
tit

y 
\ B

LO
W

5 
fo

rm
at

 (1
1-

bi
t)

Read:ref. identity / POD5 format (11-bit)

Read:ref. identity / FAST5 format (11-bit)

Tr
ue

 P
os

iti
ve

s 
(x

10
00

)

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12
False Positives (x100)

Impact of ex-zd bit-reduciton on variant calling
performance with clair3 

C

11-bit
10-bit
9-bit
8-bit
7-bit
6-bit
5-bit

400 600 800 1000 1200

Signal data pattern is independent of sample originA

1

0

1

0

1

0

1

0

R
el

at
iv

e 
fre

qu
en

cn
y

R
el

at
iv

e 
fre

qu
en

cn
y

R
el

at
iv

e 
fre

qu
en

cn
y

R
el

at
iv

e 
fre

qu
en

cn
y

400 600 800 1000 1200

Human

Bird

Reptile

Fish

400 600 800 1000 1200

400 600 800 1000 1200

Raw signal values

100

101

102

103

104
Density

0.75

0.80

0.85

0.90

0.95

1.00

Supplemental Figure S1. Supporting analyses for 
evaluation of ex-zd lossy compression. (A) 
Frequency distributions for raw signal values in ONT 
PromethION datasets generated from human genomic 
DNA (top), as well as DNA from a representative bird, 
reptile and fish species, represented in native 11-bit 
encoding (red). The characteristic ‘spiked’ frequency 
pattern is observed regardless of species, and has no 
relationship to the k-mer frequency profile in a given 
sample. (B) Density scatter plots show read:reference 
identities for individual basecalled reads. The left plot 
compares 11-bit data in BLOW5 format vs native 
POD5 format, both basecalled with Guppy SUP 
model. The right plot compares 11-bit data in BLOW5 
format vs native FAST5 format, both basecalled with 
Guppy SUP model. These plots confirm that when no 
lossy compression is applied, the choice of file format 
(either POD5, FAST5 or BLOW5) has no impact on 
base calling outcomes.

(C) ROC curves show the accuracy of germline variant calling using Clair3 for the HG002 genome reference sample 
(HG002-Prom5k chr22 subset; see Supplemental Table S1) represented in native 11-bit encoding (red) or encoded with a 
smaller number of bits (10–5 bits). The analysis shows ex-zd lossy compression has no impact on variant detection at an 
8-bit encoding or above, echoing the basecalling analysis in Figure 2.



Supplemental Figure S2. Impact of GPU hardware on basecalling outcomes. Density scatter plots show read:reference 
identities for individual basecalled reads. The left plot compares 11-bit vs 8-bit data basecalled with the latest Dorado v5 
SUP models on an NVIDIA A100 GPU. The right plot compares identical 11-bit data basecalled with the same v5 SUP 
models and Dorado software version but executed on either a NVIDIA V100 vs A100 GPU. The degree of scatter is 
equivalent between the 11-bit vs 8-bit comparison as identical data basecalled on different hardware.
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Supplemental Figure S3. Evaluating ex-zd bit-reduction strategy for lossy compression of ONT MinION data. (A) Bar chart 
shows relative file sizes for a typical ONT MinION dataset (HG002-Min5K; see Supplemental Table S1) with current lossless 
compression methods (grey bars) compared to lossy ex-zd compression with data encoded with a decreasing number of bits 
(native 13-bit down to 7-bit). Sizes are shown as percentages relative to zlib-svb-zd, which is currently the default compression 
method used in slow5tools/slow5lib. Native POD5 format, which uses zstd-svb12-zd compression, is shown for comparison. (B) 
Bar chart shows basecalling accuracy, as measured by mean read:reference identity, for the same dataset and bit-reduced 
encodings as above. Basecalling accuracies are shown separately for ONT’s Dorado (light grey) vs Guppy (dark grey) software, 
both with SUP models. (C) Density scatter plots show read:reference identities for individual basecalled reads from the same 
dataset as above. The left plot compares native 13-bit data vs bit-reduced 10-bit data, both basecalled with Guppy SUP model. 
The right plot shows native 13-bit data basecalled with Guppy vs Dorado software, using a matched SUP basecalling model. (D) 
Density scatter plots show 5mC methylation frequencies for individual basecalled reads; i.e. the fraction of CpG bases within a 
given read that are called as being methylated. The left plot compares native 11-bit data vs bit-reduced 8-bit data, both basecalled 
with Guppy SUP model. The right plot shows native 11-bit data basecalled with Guppy vs Dorado software, using a matched SUP 
basecalling model.


