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[bookmark: _Toc193537124]CellAgentChat identifies signaling pathways using spatial transcriptomics data at single-cell resolution in mouse developing brain
To identify the key signaling pathways involved in the developmental lineage between cells, we utilized CellAgentChat to infer CCIs at E14.5 and E16.5, expanding upon our analysis conducted at E12.5. At E14.5 and E16.5, we observe a continuation of the similar trends seen at E12.5. There is consistently strong interaction among Micro and vascular cells such as Ery, Endo, and Fibro (Supplementary Fig. 10A, B), highlighting their crucial role throughout neurogenesis (Tong and Vidyadaran 2016; Li et al. 2022b; Vogenstahl et al. 2022). Additionally, there remains significant Apoe signaling within Micro and collagen signaling originating from Fibro (Supplementary Fig. 10C, D). However, notable changes emerge at E14.5. Firstly, there is increased signaling within glioblasts (GlioB) and neuroblast cells (NeuB) (Supplementary Fig. 10A, C). Beginning at E14, radial glial cells (RGCs) produce intermediate progenitor cells like GlioB and NeuB before these cells terminally differentiate into specific neuronal types (Malatesta et al. 2000; Qian et al. 2000). This phenomenon persists until E18, explaining the continued trend observed at E16.5 (Supplementary Fig. 10B, D). Furthermore, there is an increase in interactions involving RGCs at E16.5 (Supplementary Fig. 10B, D), coinciding with their transition from producing neurons to generating astrocytes and later oligodendrocytes from E16 until birth (Malatesta et al. 2000; Qian et al. 2000).  
[bookmark: _Toc193537125]CellAgentChat in silico receptor blocking for analysis of perturbed downstream genes in PDAC
To supplement the use of in silico perturbation results on human breast cancer data at high spatial resolution, we also used CellAgentChat to conduct in silico perturbation on a spot level PDAC dataset. Following the same procedure as for the breast cancer analysis, we employed CellAgentChat to identify key receptors involved in LR interactions and simulated the blocking of these receptors (Supplementary Fig. 13E, F). This led to the identification of the top 50 perturbed genes most impacted by each receptor's blocking. The DisGeNET enrichment analysis to evaluate the potential therapeutic benefits of receptor blocking identified four candidate receptors, NOTCH3, PLAUR, ITGA11 and CD74, which exhibited the highest -log10 P-values (binomial test, FDR corrected, <0.05) for PDAC (Supplementary Fig. 18A). The results without using the TF prior are shown in Supplementary Fig. 19B.
The cell receiving score (CRS) of each cell, as identified from our animation platform, depicts that Acin3, Strom, Duct, Can1, and Can2 cells exhibit the highest levels of involvement in interactions with the candidate receptors (Supplementary Fig. 18B). We have identified notable interactions among these populations, bolstering this conclusion (Supplementary Fig. 13E, F). While ductal cells traditionally serve as the primary origin of PDAC, emerging evidence suggests that acinar cells may also contribute to the development of PDAC (Xu et al. 2019). This intriguing possibility could explain the extensive involvement of both Duct and Acin3 cells in interactions with all three receptors (Supplementary Fig. 18B). Furthermore, studies have demonstrated that stromal cells significantly influence extracellular matrix (ECM) formation and tumor progression in PDAC (Mun et al. 2022). Through an agent-based view, we gain robust confirmation of the extensive involvement of Strom, Duct, Can1, and Can2 cells in the context of PDAC. Notably, the agent-based approach reveals even more pronounced interactions with Acin3 cells, further enriching our understanding of the intricate dynamics at play in this disease.
While studies have linked many of the receptors analyzed in this study with PDAC, the candidate receptors we identified — NOTCH3, PLAUR, ITGA11 and CD74—appear to play a particularly crucial role in PDAC development (Schnittert et al. 2019; Xiu et al. 2021; Zhang et al. 2021; Peng et al. 2023) (Supplementary Fig. 18, 19). This finding validates the efficacy of the in silico receptor blocking technique facilitated by CellAgentChat. Blocking the NOTCH3, PLAUR, ITGA11 and CD74 receptors in silico perturbs the disease genes associated with PDAC (from DisGeNET) (Supplementary Fig. 18C, E, G, I, 19C). In particular, when PLAUR was blocked, DHX58 emerged as the fourth most affected gene, previously linked with PDAC (Abt et al. 2022) (Supplementary Fig. 18C). All other PDAC disease target genes perturbed by blocking the candidate receptors are depicted in Supplementary Figure. 18 and 19, highlighted in red.
To assess the effectiveness of CellAgentChat in predicting the impact of receptor perturbation on PDAC disease target genes, we compared its performance with that of scGen. While scGen identified SDC1, TNFRSF10A, and ITGA5 as receptors whose perturbation significantly affected PDAC-related genes (Supplementary Fig. 20C), survival analysis indicated that only ITGA5 expression levels had a significant influence on survival probability (Supplementary Fig. 20E). In contrast, predictions from CellAgentChat aligned more closely with survival analysis results (Supplementary Fig. 18D, F, H ,J), demonstrating greater specificity in targeting PDAC-related genes while minimizing effects on unrelated genes, compared to scGen (Supplementary Fig. 20D).
[bookmark: _Toc193537126]CellAgentChat's in silico receptor blocking for analysis of perturbed downstream genes in tumor and healthy regions of PDAC
Examining perturbation effects in both diseased and healthy tissues offer valuable insights into underlying disease mechanisms and potential therapeutic strategies. To further investigate these dynamics, we conducted an in silico receptor-blocking analysis, focusing on tumor versus healthy regions of the pancreas in a patient with PDAC (Khaliq et al. 2024). Using the same methodology applied in breast cancer and other PDAC analyses, we utilized CellAgentChat to identify key receptors involved in LR interactions within the diseased and normal pancreatic regions separately and simulated the blocking of these receptors.
In the diseased tissue, we identified 11 candidate receptors for perturbation based on their involvement in the top 25 most interacting LR pairs (Supplementary Fig. 21A, B, 22A), leading to the identification of the 50 most perturbed genes affected by each receptor’s blocking (Supplementary Figs. 22A, C, E, G, 23). DisGeNET enrichment analysis revealed three candidate receptors—LRP1, CAV1, and CD93—significantly disrupted downstream genes associated with PDAC (Supplementary Figs. 22A). Notably, all three receptors have been linked to PDAC in previous studies, validating the efficacy of our in silico receptor-blocking approach (Gheysarzadeh et al. 2019; Bittoni et al. 2021; Huang et al. 2021). Blocking LRP1, in particular, strongly perturbed COX8A, a gene previously associated with PDAC (Pervin et al. 2023). All other PDAC disease target genes perturbed by blocking the candidate receptors are depicted in Supplementary Figure 23, highlighted in red. Additionally, survival analysis showed significant differences in survival probabilities across high versus low expression levels of these receptors (Supplementary Figs. 22D, F, H). 
In the normal pancreatic region, receptor-blocking perturbations did not disrupt genes associated with PDAC (Supplementary Fig. 21C, D 22B), aligning with the absence of disease-related communication patterns in healthy tissue. To explore cross-context effects, we extended the in silico perturbation of disease-specific receptors to normal tissue (Supplementary Fig. 24). While CAV1 and CD93 no longer significantly disrupted PDAC-associated genes, LRP1 exhibited a modest effect, though less pronounced than in the diseased tissue (Supplementary Fig. 24). These findings highlight that receptor-blocking effects may differ between disease and normal tissues, potentially providing insights into the specificity and side effects of therapeutic interventions.
This analysis underscores the importance of comparing perturbations across diseased and normal tissues to better understand receptor-mediated communication patterns, identify potential therapeutic targets, and evaluate the broader implications of receptor-blocking strategies on healthy tissues.
[bookmark: _Toc193537127]CellAgentChat empowers dynamic simulations using agent-based modeling
To ensure the robustness of our approach across varying step sizes, we extended our analysis to include step sizes of 3, 5, 10, 15, and 20. The results demonstrate that the correlation between the ABM trajectory and the pseudotime trajectory remains largely consistent across these steps (Supplementary Fig. 27G). While a slight decrease in correlation is observed with larger step sizes, this is expected due to the increased simulation range, where predictions naturally become less certain. However, this decrease is minimal and does not compromise the overall consistency of the results. Although step sizes beyond 20 could theoretically be evaluated, practical considerations limit their utility. Validating the results involves calculating trajectories for 20 or more bins, with cells assigned to each bin to compute average trajectories (pseudotime) at each step. As step size increases, the number of bins grows, leading to fewer cells per bin and reduced statistical reliability. Consequently, predictions for step sizes exceeding 20 ticks in the dynamic simulation become less confident. To illustrate this, we provide a plot showing the relationship between step size, correlation, and bin size, which identifies step size 20 as the practical upper limit for robust simulations with our datasets (Supplementary Fig. 27H). This analysis confirms that our approach is robust to variations in time step size, maintaining consistent results within the practical range of step sizes.
[bookmark: _Toc193537128]Validations of deep learning module to estimate the conversion rate and perform in silico perturbation
Eq. 3 in the main text posits that perturbing receptor expression increases the loss compared to the original loss. We confirm through numerical experiments that  is consistently positive, as evidenced by histogram plots for each dataset (Supplementary Fig. 30), where no instances of negative  were observed. This indicates that receptor perturbation reliably increases the loss. Theoretically, this outcome is intuitive: perturbing a receptor either disrupts downstream gene expression, leading to greater deviation from the ground truth and increased loss, or it has no effect, leaving the loss unchanged. Since perturbation cannot improve alignment with the ground truth, the perturbed loss will never decrease relative to the original loss, ensuring  .
We also confirmed that perturbation-induced changes in downstream gene expression for marker genes were consistent within individual cell types, either increasing or decreasing across cells of the same type. However, we did not observe consistent changes across all cells or genes. Specifically, for tumor cells, tumor-associated stromal cells, and normal stromal cells—three cell types heavily affected by perturbation in our breast cancer perturbation results—we observed that marker gene expression changes align consistently within each cell type but differ between cell types (Supplementary Figs. 31A, 32A, 33A). In contrast, random genes or genes whose expression is not specific to a cell type showed inconsistent directions of change within the same cell type. Importantly, these changes were also very mild. To quantify this observation, we compared the average absolute difference in gene scores before and after perturbation of EGFR, PDCD1 and CTLA4 for marker genes within the same cell type to that of random genes. Marker genes exhibited significantly larger changes compared to random genes (Supplementary Figs. 31B, 32B, 33B).  
[bookmark: _Toc193537129]Ablation of the biological informed neural network using a gene network and conversion rate
To evaluate the importance of key components in CellAgentChat, we conducted a series of ablation studies, focusing on the effects of removing the receptor conversion rate and replacing biological gene network priors in the neural network with a simpler network structure (Supplementary Fig. 34E-G). The receptor conversion rate is essential for capturing biologically relevant CCIs. When this component was entirely removed, the model’s performance deteriorated significantly, leading to reduced accuracy in predicting CCIs (Supplementary Fig. 34E-G). This decline highlights the critical role of the conversion rate in accounting for the downstream effects of CCIs on gene expression dynamics, ultimately enhancing overall prediction accuracy.
We also examined the impact of replacing biological gene network priors in the neural network with a simple densely connected neural network. These priors, which incorporate receptor-transcription factor (TF) and TF-gene interactions, are designed to guide the model using biologically relevant information. Substituting this structure with a densely connected network significantly worsened the model’s ability to predict accurate CCIs (Supplementary Fig. 34E-G). Incorporating biological priors into the neural network structure was shown to substantially enhance the model’s predictions, demonstrating the importance of leveraging prior knowledge for improved performance.
To further understand the implications of removing biological constraints, we analyzed the effects on in silico perturbation results. In the model without biological priors, the specificity of perturbation predictions decreased, leading to the detection of less biologically relevant genes during receptor knockouts (Supplementary Figs. 15B, 19B, 25). Receptors previously identified as insignificant were incorrectly predicted as significant, reducing the interpretability of the results. This finding highlights the role of biological priors in ensuring meaningful and reliable outcomes in perturbation analyses.
Overall, these ablation studies demonstrate that the receptor conversion rate and biological priors are integral to the performance of CellAgentChat. Removing these components compromises the model’s accuracy and biological relevance, particularly in predicting CCIs and interpreting in silico perturbation results. These results validate the effectiveness of the model’s design and emphasize the value of integrating biological constraints for studying cell-cell communication and therapeutic strategies.
[bookmark: _Toc193537130]Supplementary Methods
[bookmark: _Toc193537131]Single-cell sequencing data preprocessing
We preprocessed the single-cell RNA-sequencing (scRNA-seq) data using the SCANPY (Wolf et al. 2018) pipeline. We began by filtering out cells with more than 20% mitochondrial reads, which are indicative of poor-quality cells (Islam et al. 2014; Ilicic et al. 2016). We also removed genes not expressed by a minimum of 3 cells. Finally, cell counts are normalized against the library size and transformed into log space (with the log1p function). As an ablation study, we show that using normalized gene expression values provide better results than using raw unprocessed counts (Supplementary Fig. 34A-D). The spatial coordinates of each cell are incorporated into the “anndata” object (in h5ad format) with the gene expression.
[bookmark: _Toc193537132]Functional Evaluation of Ligand-Receptor pairs inferred by CellAgentChat
We conducted pathway enrichment analysis to validate the interactions inferred by CellAgentChat functionally. We utilized both ligands and receptors from the top 25 highest scoring LR pairs among all cell type pairs as the input gene set. To perform Reactome pathway enrichment analysis, we employed g: Profiler (Raudvere et al. 2019) and selected all terms from the Reactome pathway with a minimum adjusted P-value below 0.01. This approach was consistent across all datasets, regardless of spatial or non-spatial. In the cases where we compared the enrichments for the Reactome pathways between two groups (e.g. long-range group vs. short-range group), we used signed-rank Wilcoxon test. 
[bookmark: _Toc193537133]Benchmarking
We conducted a comparative analysis of CellAgentChat with nine other state-of-the-art methods, namely CellChat, CellPhoneDB, NICHES, COMMOT, Scriabin, Connectome, SingleCellSignalR, NATMI, scSeqComm. Among these, CellChat, CellPhoneDB, and NICHES all facilitate the inference of cell-cell interactions (CCIs) using both spatial and non-spatial data. Conversely, COMMOT exclusively supports spatial data, while Scriabin, Connectome, SingleCellSignalR, NATMI, scSeqComm exclusively supports non-spatial data. Additionally, Scriabin allows for the computation of a cell-cell interaction matrix (CCIM); however, it is recommended only for small datasets due to scalability limitations. Consequently, we could only evaluate Scriabin's performance for the PDAC and the SeqFISH+ mouse somatosensory cortex datasets. We used the LR universe derived from CellTalkDB for all methods.
We conducted systematic benchmarking with and without spatial data to validate CellAgentChat's ability to accurately infer interactions prior to integrating the spatial tendencies of CCIs. We also used the LIANA+ benchmark (Dimitrov et al. 2024) to help with our evaluations. To assess the accuracies of the methods, we measured the Pearson’s Correlation to evaluate the communication pattern across cell types of each of the nine methods. In the absence of a ground-truth, we employed an ensemble approach. We normalized the interaction matrix computed by each method and took the average to create an ensemble interaction matrix as our new “ground-truth”. We then calculated the Pearson’s correlation between the ensemble interaction matrix and the inferred communication patterns of each method. Additionally, we compared the interaction matrix of each method with the overall distance matrix of the cells to verify whether CellAgentChat’s CCI predictions were influenced by the spatial proximity between cells. Specifically, we calculated the Pearson’s Correlation between the cell interaction matrix with the cell-cell inverse distance (1/d) matrix. 
As described above, we also conducted pathway enrichment analysis using the genes from the top 100 LR pairs to evaluate the functional validation of the LR interactions inferred by all nine methods. We identified pathways through Reactome pathway enrichment analysis of the inferred interactions by at least two methods, to capture the most relevant pathways, and compared the -log10 adjusted P-values across all methods. To differentiate the functional validity of the LR interactions across the methods we used the Wilcoxon test (one-sided). 
Finally, to compare the similarity in the inferred interactions we determined the number of shared LR interactions from the top 100 pairs identified by each method.
[bookmark: _Toc193537134]Selection of optimal parameters for CCI inference and dynamic simulations with CellAgentChat
Implementing CellAgentChat requires users to select several parameters. Here we discuss these parameters, their necessity in CCI calculation, their impact on obtained results, and suggestions for adjusting them to facilitate effective CCI inference and ABM simulations. 
User defined hyperparameters essential for CCI inference with CellAgentChat include: 
1) Tau (: a parameter of the ligand diffusion rate that represents the degrees of spatial freedom concerning spatial distance (default,  = 2).
2) Delta (): a parameter of the ligand diffusion rate that controls the decay rate of ligand diffusion (default,  = 1).
3) Sliding window (w): a parameter to control the restriction of cells in differing pseudotime (optional) bins from interacting (default, w = 1).
4) Time steps: The number of time steps/ticks the model will simulate (default = 1).
 represents the degrees of spatial freedom concerning spatial data.  is typically set to 2 for spatial transcriptomics data derived from 2-dimensional slices. However, as technology advances and 3-dimensional slices become more prevalent (Rao et al. 2021), we can adjust the  parameter accordingly (=3). When no spatial data is provided,  is automatically set to 0 by the model.
 controls the decay rate of ligand diffusion. Due to the lack of specific information regarding the rates at which each ligand travels or whether LR pairs operate at short or long ranges, we set  for all ligands. However, we use the  parameter as an estimation tool to infer the distance range of LR pairs. Our model can infer which LR pairs are long- or short-range. To effectively model these interactions, we recommend setting δ=10 for all ligands to simulate short-range interactions, and δ=0.1 for all ligands to simulate long-range interactions. This will allow the model to capture LR pairs in the data that work predominantly in long/short ranges. Using these results, we can then setup the ligand diffusion rate according to prescribe unique diffusion rates () for each ligand. 
The sliding window parameter (w) governs whether cells in neighboring pseudotime points or bins can interact. By default, w=1, adhering to the methodology outlined in TraSig, which restricts cell interactions to those within the same bin. However, to address potential limitations arising from the assumption that cells with differing pseudotime values do not interact, we introduce the sliding window feature. This feature allows users to define a window within which interactions across pseudotime groups are permitted to a certain extent. We recommend using small values for w, such as w=1, to adhere closely to the TraSig approach or w=2 or w=3, to permit interactions across neighboring time points while still maintaining a degree of restriction to cells at similar time points.
The number of time steps the model can simulate is also customizable by the user. By default, the model runs for one time step, producing results reflecting the current cell states, similar to other CCI inference methods. However, running CellAgentChat over multiple time steps enables users to analyze how CCIs modify cell states over time and influence subsequent interactions. This capability offers a deeper understanding of the dynamic nature of CCIs and their impact on cellular behaviors over time.
[bookmark: _Toc193537135]Integration of cell agent pseudotime in calculating cell-cell interaction score
Cell Agent State: Pseudotime 
Even the cells within the same cluster exhibit differences, in many continuous biological processes, such as cell differentiation or disease progression. Pseudotime provides ordering of the cells within the cluster (and the entire dataset). The interactions of cells with varying pseudotime may differ substantially, even if they belong to the same cluster (Li et al. 2022a). Therefore, here we include the pseudotime as a cell agent state description. In order to calculate the pseudotime trajectory of each cell, we use Slingshot (Street et al. 2018), a cell lineage and pseudotime inference tool. Using the pseudotime values generated from Slingshot, we group each cluster's cells into different pseudotime bins (“stages”). Following the framework developed by TraSig (Li et al. 2022a), CellAgentChat stores the pseudotime bin that each cell resides in and uses it to calculate the interaction score for the single-cell data with spatial information.
Cell Agent Communication Behavior Rules with Pseudotime 
The CCI score discussed in the main text ignores the pseudotime time differences between all cell agents in the same cluster. However, the integration of the cell pseudotime improves the CCI inference (Li et al. 2022a). The main difference in these score calculations lies in the fact that, instead of computing scores between every cell in two clusters, we now exclusively calculate scores between cells that reside within the same pseudotime bin ():	           	 

We take the average score of all non-zero bins to produce a final pseudotime-integrated interaction score () for a given ligand-receptor (l,r) pair between two clusters:				 

We also provide users with the choice to relax the constraint on cells interacting only when they are within the same pseudotime bin. We present a sliding window parameter (w) that allows for cells in neighboring pseudotime points/bins to interact. For example, if w=2, then a cell i in  will interact with cell j in  if or if is one of the neighboring two pseudotime bins in either direction from . By default, w=0.
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