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Supplemental Figure 1. Immediate early gene expression is triggered after KCl treatment
in all datasets. (A) Table denoting the experimental parameters used to generate each dataset.
(B-E) Log: fold change in expression of immediate early genes between KCl and control
samples across all datasets included in the analysis; (B) Maze et al. 2015, (C) Ibarra et al. 2022,
(D) Quesnel-Vallieres et al. 2016, (E) Xu et al. 2022, (F) Calderon et al. 2022. Dashed line

denotes no change in expression (log2FC = 1).
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Supplemental Figure 2. KCl-stimulated samples across different datasets converge at the
level of alternative splicing. (A) PCA of inclusion of 9,771 exons quantified in all datasets
used in this work plotted within the same PCA space. Fill denotes KCI status, fill color
represents time after stimulation, and shape denotes dataset of origin. Percent of variance each
principal component represents is shown on each axis. (B) PCA of expression of 11,428 genes
guantified in all datasets used in this work plotted within the same PCA space. Fill denotes KClI
status, fill color represents time after stimulation, and shape denotes dataset of origin. Percent

of variance each principal component represents is shown on each axis.



vast-tools APSI

rMATS

0501 - 092 p<2.2e-16 Y|
0.25+ A=
.
oY
/7
/7
/7
0.00+ —
/7
/7
A
~0.25- hg‘tég ‘
L0
A%, o
> %
20
/
/
~0.50 +
050  -025 0.00 0.25 0.50
rMATS APSI

RT-PCR APSI

vast-tools

0501 4 029, p=0.27 Y|
0.25+ 2L
/7
/7
/7
/7
0.00- —
/7
o 7/
® S
=/
/‘r L J
~0.25- %
/
o o ©
he
/7
/ T
/
~0.50 +
050  -025 0.00 0.25 0.50

rMATS APSI




Supplemental Figure 3. KCl-dependent microexons are identified by rMATS. (A) Euler plot
showing the overlap of differentially spliced microexons (<28nt) after 3h of KCI treatment called
by vast-tools in Quesnel-Vallieres et al. and rMATS in this study. (B) Scatterplot of microexon
APSIs called by vast-tools and rMATS. Correlation was calculated using Pearson’s R. (C)
Scatterplot of APSIs for KCI-dependent microexons called by rMATS and validated by reverse

transcription PCR (RT-PCR) in Quesnel-Vallieres et al.
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Supplemental Figure 4. Different lengths of KCI stimulation induce distinct alternative
splicing patterns. (A) Euler plot of differentially spliced exons across KCI timepoints from
Ibarra, et al. (B) Enriched Gene Ontology terms for each KCI timepoint from Ibarra, et al. All
significant terms from the “Biological Process” set are shown. Timepoints which returned no
significantly enriched terms are not shown. (C) Euler plot of differentially spliced exons across
KCI timepoints from Maze, et al. (D) Enriched Gene Ontology terms for each KCI timepoint from
Maze, et al. All significant terms from the “Biological Process” set are shown. Timepoints which
returned no significantly enriched terms are not shown. (E) Euler plot of differentially spliced
exons across KCI timepoints from Xu, et al. (F) Enriched Gene Ontology terms for each KCI
timepoint from Xu, et al. All significant terms from the “Biological Process” set are shown.
Timepoints which returned no significantly enriched terms are not shown. (G) Euler plot of
differentially spliced exons across KCl timepoints from Quesnel-Vallieres, et al. (H) Enriched
Gene Ontology terms for each KCI timepoint from Quesnel-Vallieres, et al. All significant terms
from the “Biological Process” set are shown. Timepoints which returned no significantly enriched
terms are not shown. (1) Euler plot of differentially spliced exons across KCI timepoints from

Calderon, et al. Note, no enriched Gene Ontology terms were found for either timepoint.
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Supplemental Figure 5. KCIl-dependent differentially spliced exons and differentially
expressed genes are consistent across datasets. (A) Number of datasets which share a
differential alternative exon or DEG found in each dataset. (B) Number of datasets in which a
given high-confidence KCl-dependent exon is found. (C) Proportion of each dataset in which a
differential alternative exon is found in another dataset. (D) Number of datasets in which a given
high-confidence KCI-dependent DEG is found. (E) Proportion of each dataset in which a DEG is

found in another dataset.
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Supplemental Figure 6. KCl-dependent exons are marked by particular features. (A)
Cumulative distribution function across total gene length for KCl-dependent (blue and red lines)
and control exons (grey line). (B) Percent GC across exon length bins. Each bin contains an
equal number of exons for each group. (C) Heatmap of weighted Spearman Rank correlations
between all datasets used in analysis (see Methods for description of calculation). Datasets
categorized as “moderate” and “long” after KCI stimulation are designated. Q-V is equivalent to
Quesnel-Vallieres, et al. (D) Fraction of KCIl-dependent exons classified as translated and
untranslated. Annotations are taken from GENCODE annotations of mm39 (v31). (E) Fraction of
KCI-dependent exons exhibiting a 0, +1, or +2 frameshift. Frameshifts are calculated based on

exon length being a multiple of three.
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Supplemental Figure 7. High confidence KCl-dependent exons alter the coding
potential of a diverse group of functional protein domains. (A) left, top 10 most

frequently overlapping Pfam domains with moderate high confidence KCl-dependent
exons that do not induce a frameshift; right, top 10 most frequently overlapping Pfam

domains with long high confidence KCI-dependent that do not induce a frameshift.
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Supplemental Figure 8. KCl treatment alters the splicing of many histone modifying
enzymes. (A) Stacked bar graph of genes under the GO term “histone modification” whose
splicing is altered by KCI. Color denotes the primary target residue. (B) Euler plot of KCI-

dependent exons under KCI-dependent H3K36me3 or H4K20mel peaks.
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Supplemental Figure 9. Genes containing frameshifted, KCl-dependent exons are
not differentially expressed. (A) Proportion of frameshifting, KCl-dependent exons
which are also differentially expressed in Maze, et al. using relaxed cutoffs (L2FC > 1;
p.adj < 0.05). Percentage at the center of each plot denotes the percentage of exons
which are differentially expressed (both up- and down-regulated). (B) Same as (A) for
Ibarra, et al. (C) Same as (A) for Xu, et al. (D) Same as (A) for Calderon, et al. (E)

Same as (A) Quesnel-Vallieres, et al.



