

1 Supplementary information for manuscript entitled

2

3 **“Exon Nomenclature and Classification of Transcripts (ENACT)**

4 **- Systematic framework to annotate exon attributes”**

5

6

7

8

9 **Paras Verma, Deeksha Thakur, Deepanshi Awasthi and Shashi Bhushan**

10 **Pandit***

11

12

13 **Running Title:** ENACT - exon annotation framework

14

15

16 **Keywords:** Alternative splicing, exon nomenclature, exon inclusion, intron retention

17

18

19 *To whom correspondence should be addressed

20 Shashi Bhushan Pandit

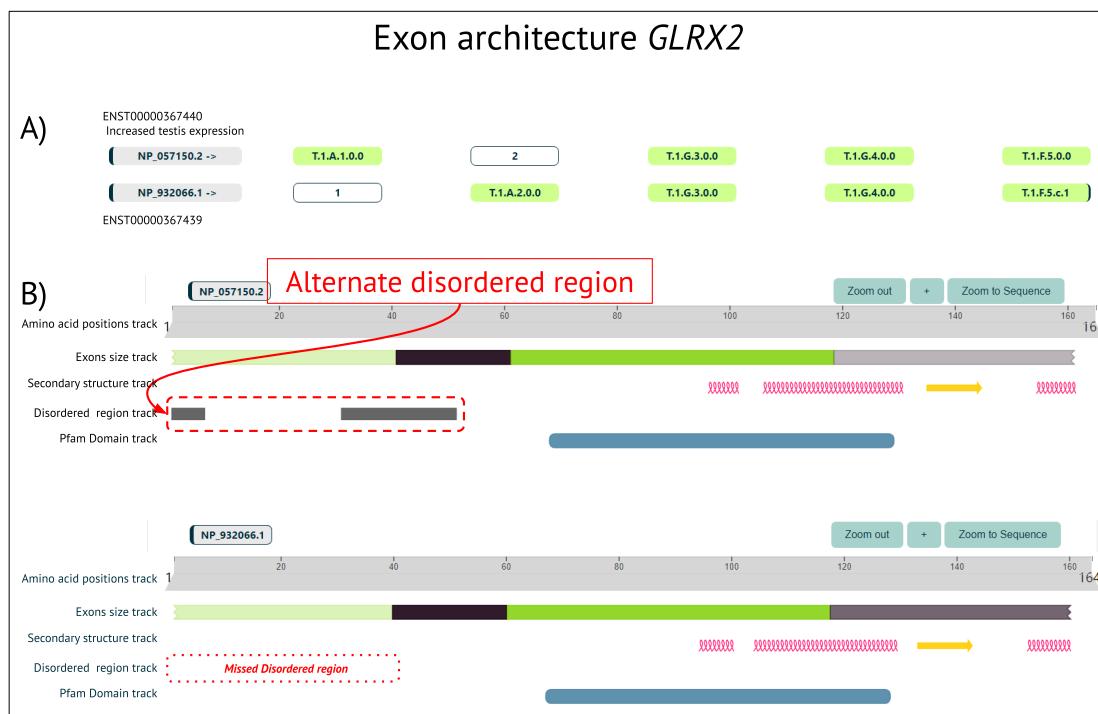
21 Associate Professor

22 Bioinformatics Center,

23 Department of Biological Sciences

24 Indian Institute of Science Education and Research (IISER) – Mohali,

25 Knowledge City, Sector-81, SAS Nagar, Manauli PO 140306, India.


26 Email: shashibp@iisermohali.ac.in

27

28 **S1: Exon architecture of human *GLRX2* gene**

29 We present a case study of *GLRX2* gene isoforms with their composed EUIDs from
 30 ENACT (Figure S1). This case illustrates large independence in ENACT's exon
 31 centralization procedure while having seed representation from Reference isoform
 32 (RISO, having largest number of coding exons, see Methods in the main manuscript).
 33 In *GLRX2* gene, differential exon usage was noted in different organs [1, 2]. The
 34 expression of isoform NP_932066.1 (ENST00000367439) decreased two-fold, while
 35 that of isoform NP_057150.2's (ENST00000367440) increased significantly in testis
 36 tissue. Importantly, exons 1 and 2 are mutually exclusive (multiple exon alignment
 37 not shown). Both isoforms have the same exon counts, where NP_057150.2 consists
 38 of alternate coding exon-1 (Block-II: A) and NP_932066.1 as alternate coding exon-2
 39 (Block-II: A). As NP_057150.2 is one amino acid longer than NP_932066.1, ENACT
 40 selects it as the reference. Due to this selection, the algorithm does not exclude
 41 alternate coding exon 2, even though it is absent in NP_057150.2; instead, this forms
 42 part of the reference set of exons (RSOEx) and is assigned a relevant ordinal position.

43 We also identified alternate exons that introduce different functional regions by
 44 utilizing ENACTdb. For example, NP_057150.2 (abundant in testis tissue) contains a
 45 disordered region absent in the other isoform, as shown in the Nightingale view of
 46 ENACTdb [3] in Figure S2-B.

47
 48 **Figure S1: ENACT annotated exon architecture of human gene *GLRX2* and**
 49 **functionality inference from ENACTdb. A) Exon composition comparison between testis**

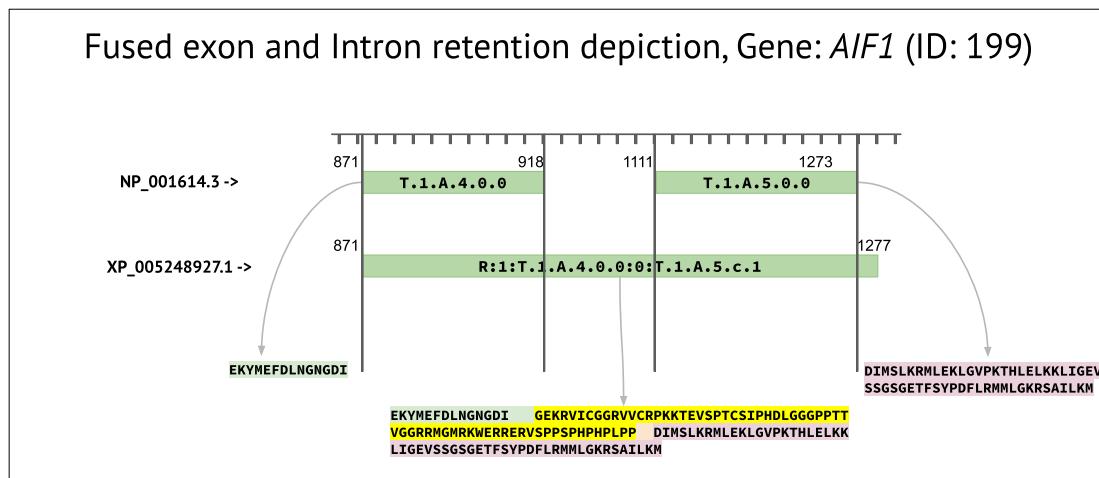
50 overexpressed isoform NP_0057150.2 and pancreas overexpressed isoform NP_932066.1. B)
51 Nightingale's view of ENACTdb with domain/disorder overlaid on exon features,
52 highlighting likely functional changes introduced by alternate exons.
53

54 **S2: Annotation of intron retention instance in human gene *AIF1***

55 In Figure S2, we show intron retention/exon fusion involving genomic coordinates of
56 exons 4 and 5 or gene *AIF1* in a single row and that of fused exon construct in
57 another row. Genomic coordinates have been shown using the vertical bar. Other
58 exons have not been shown in Figure S2 for clarity. ENACT gives the following
59 notation to this fused exon (background color only to distinguish attributes):

60 R:1:T.1.A.4.0.0:0:T.1.A.5.c.1

61 • The first letter 'R' (cyan background) denotes these instances as intron
62 retention cases. (Other block-1 instances were U: UTR exons, T: CDS exons,
63 D: exons intervening in UTR and CDS, and M: coding exons having only
64 '1nt' as coding genomic coordinate).


65 • Following this, 1 (green background) indicates local protein-coding potential
66 (This is local scope of Block-1, where value -2 indicate no coding genomic
67 coordinate and amino acid ('aa') sequence, -1 means coding genomic
68 coordinate but no 'aa' sequence, 0 means coding genomic coordinate of only
69 1 nt and hence will not have dedicated 'aa' sequence, 1 means it does have
70 coding genomic coordinates and assigned 'aa' sequence and >1 values mean
71 different 'aa' sequence than reference instance).
72 (For other Block-I notations, see Figures 1 and 6 in the main manuscript)

73 • Yellow EUID indicates former exon, from where intron retention begins
74 • Magenta value 0 indicates the 0th instance of intron retention beginning from
75 this yellow EUID exon; had another retention starting from exon 4, this value
76 would have been incremented by 1.
77 • Red EUID indicates to which exon this exon has fused/retained the intronic
78 part, which in this case is exon 5.

79 The value 5.c.1 in red EUID indicates splice site alteration in the last exon. As
80 illustrated in the figure, it can be noted that genomic coordinates for this entity
81 extended right from the exon 5 by 4 nt.

82 Comparing the amino acid ('aa') sequence for this entity, it can be seen in the
83 figure that this fusion retained the original frame and added a yellow highlighted
84 sequence. The functional context of this retention and added sequence can be studied

85 from ENACTdb, where it was found to extend contribution to disordered region (data
86 not shown).

87
88 **Figure S2. Depiction of Fused exon instance for two separate exons at ordinal position 4**
89 **and 5 in human gene *AIF1*.** ENACT depicts such cases as ‘intron retention’ (exon fusion)
90 between exon instances 4 and 5 in row 1 from Isf NP_001614.3. This exon is larger than
91 exon 4 and 5 as it has retained the intron region between them. Vertical grey lines depict the
92 splice boundaries for exons 4 and 5. The amino acid sequence, for instance, 4, has been
93 written with a light green background, and exon 5 has been written with pink background.
94 The fused exon sequence matches instances 4 and 5, where unique additions of amino acids
95 are written with yellow background.

96

97 **S3: Comprehensive illustration of ENACT algorithm**

98 This section provides a detailed and comprehensive demonstration of the ENACT
99 algorithm using human *RUNX1T1* gene in Figure S3, focusing on annotating exons
100 (multiple overlapping instances) located at the 5' region. This 5' region (N-terminal)
101 undergoes complex splicing patterns as noted by RefSeq
102 (<https://www.ncbi.nlm.nih.gov/gene/862>) and is also observed as a fusion in cancers
103 [4]. Through Figure S3, we show how ENACT’s handling of complex splicing
104 patterns.

105 Gene *RUNX1T1* and comprehensive capture of exon variant relationships

106 A. Figure S3-A shows isoforms of gene *RUNX1T1*, highlighting variable exons
107 and their variants at the 5' end of the gene (rectangular block, exon 4 to 8).
108 The RISO isoform identifier is colored in purple, and its constituent exons,
109 which compose the initial reference set of exons ($RSOEx_{RISO}$), are colored in
110 light blue. Exons at ordinal positions 1-2 and 5-7 will not form part of
111 $RSOEx_{RISO}$ initially, and their variants are added in subsequent algorithm
112 steps. Before this, exons overlapping with $RSOEx$ (exons 4', 8' and 8''),
113 referred to as $OlEx$, are filtered and maintained under $Exon_{variant}$ for processing

114 to derive splice site relationships (splice site variants of n/c/b, or intron
115 retention) to their *RSOEx* counterparts. Figure S3-B depicts how splice site
116 overlap is computed based on genomic coordinates to determine whether only
117 5', 3', or both 3' and 5' splice sites vary in *Exon_{variant}* compared to its
118 corresponding overlapping exons in *RSOEx*. These variations are annotated as
119 n, c, or b within the *Exon_{variant}* set.

120 B. For exons not initially included in *RSOEx* or filtered into *Exon_{variant}*, the
121 algorithm identifies them for appropriate inclusion in *RSOEx* and *Exon_{variant}*
122 sets based on their ordinal position relevance and length criterion. Exons in
123 that non-overlapping exons set (*NolEx*) may exist as single genomic
124 coordinate instances or have multiple splice site varying instances (*NolEx-B*).
125 The *NolEx-B* set undergoes iterative processing (explained in Figure S3-C) to
126 identify one exon as representative for *RSOEx* updation. At the same time,
127 other overlapping entities are marked as splice site variants and updated to the
128 *Exon_{variant}* set.

129 To identify representative exons among *NolEx-B*, the algorithm
130 prioritizes overlap evaluation from smaller-sized exons and identifies all
131 overlapping (based on genomic coordinates) exonic instances. Then, one
132 representative (*Qualifier_{exon}*) is chosen using ‘lmin’ criteria in ‘SelectExon’
133 procedure. Other exon entities overlapping (based on genomic coordinates) to
134 *Qualifier_{exon}* are added to *Exon_{variant}* set. For example,

- 135 • Iter1: shows the handling of exons at position 6. Exon-6' was selected,
136 and its overlapping set (genomically overlapped exons (*GoEx*)) was
137 constructed (having exon 6 and 5-6). Exon 6 from this *GoEx* is selected as
138 representative and updated to *RSOEx*, while others are added to *Exon_{variant}*
139 set. These instances are now removed from *NolEx-B*.
- 140 • Iter2: Exon-5 (a single instance) is added to *RSOEx* and removed from
141 *NolEx-B*.
- 142 • Iter3: the last set of overlapping exons (exon-7) is similarly processed.
143 Instance 7 is chosen as representative, and the corresponding *GoEx* is
144 moved to the *Exon_{variant}* set.

145 This process continues till the *NolEx-B* list is exhausted. Subsequently,
146 updated *RSOEx* are sorted based on their genomic coordinates and assigned
147 ordinal positions.

148 The selection of reference isoform (RISO) plays an important role
149 here. The greater the number of exons in *RSOEx* (populated initially from
150 RISO), the smaller the computational cost for running the ‘selectExon’
151 procedure to update the *RSOEx* later. Therefore, we preferred to select RISO,
152 which has the highest number of coding exons.

153 C. Figure S3-D shows the relationships between updated *RSOEx* and *Exon_{variant}*
154 sets, illustrating how comprehensive Block-III attributes are notated as n/c/b
155 splice variants for *Exon_{variant}* set from corresponding *RSOEx*, and track of each
156 unique such variation is accounted for ordinal position. Exons overlapping to
157 two *RSOEx* instances (e.g., exon 5-6) based on genomic coordinates are
158 annotated as intron retention events. (also specified in Figure S2).

159 In the next step, prevalence is assessed based on the exon’s occurrence
160 in isoforms. Exons present in all isoforms are annotated constitutive (G),
161 those in some isoforms as alternate (A), and those in all isoforms but with
162 splice site variations as constitutive-like/facultative (F) (Figure S3-E).

163

164

165

166

167

168

169

170

171

172

173

174

175

176

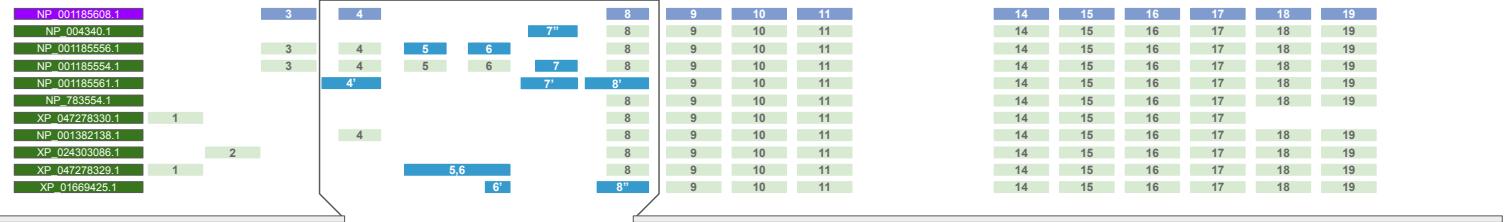
177

178

179

180

181

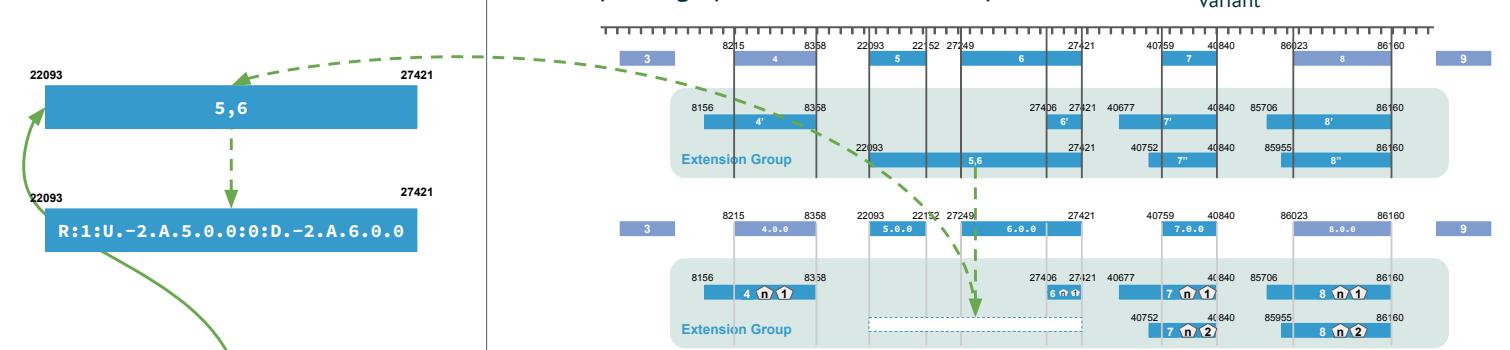

182

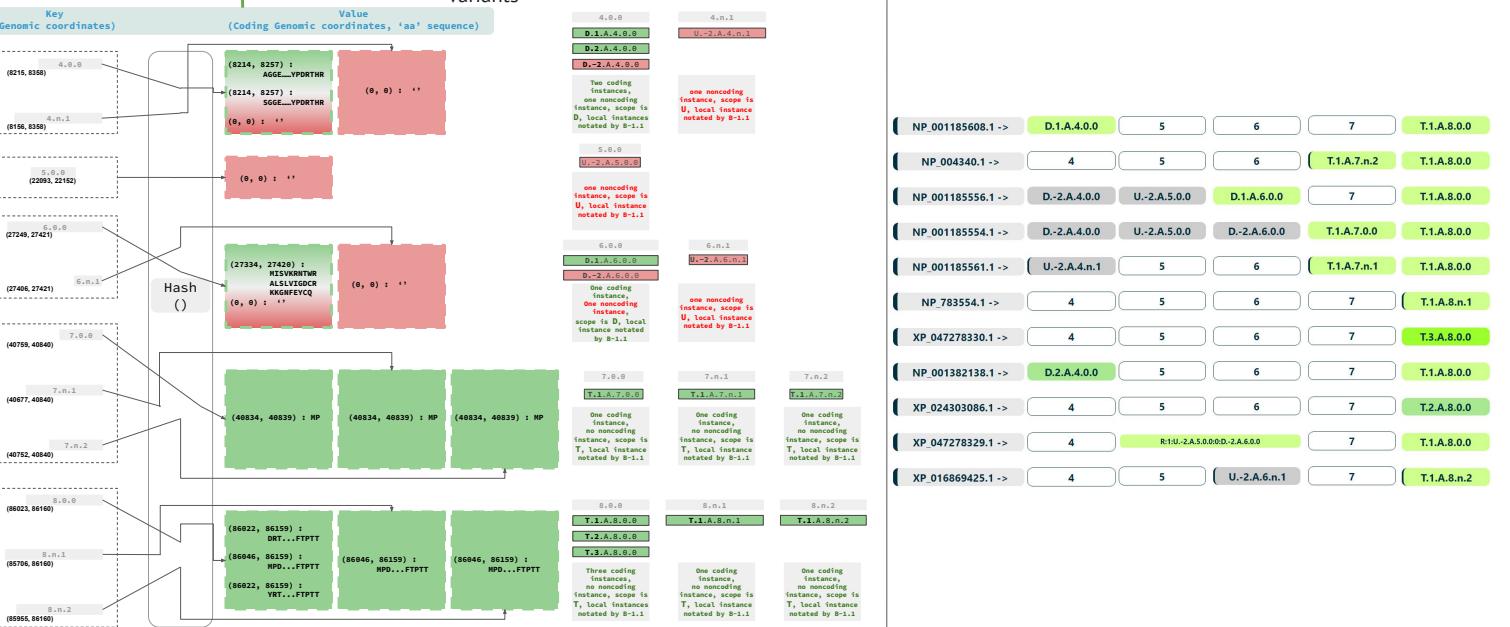
183

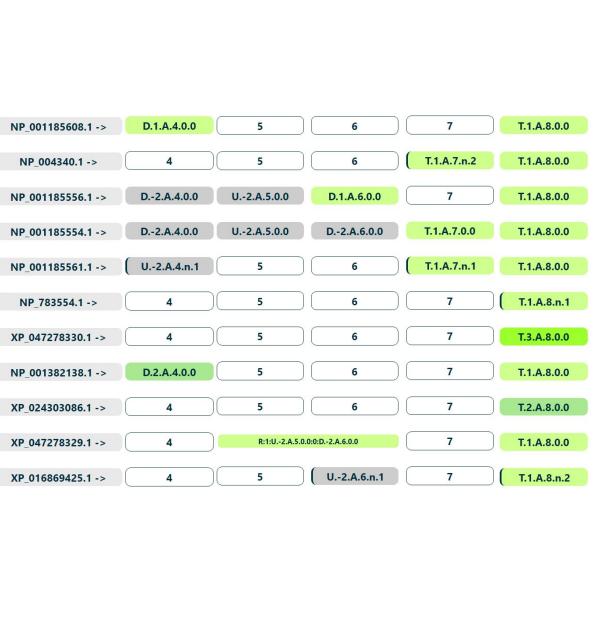
184

ENACT procedural depiction to annotate N-Ter exon cluster of *RUNX1T1* gene

A Exon architecture *RunX1T1*


B Filtering Exon variants for RSOEx_{RISO}


C Updating RSOEx and Exon variants


F Intron retention annotation

G Coding potential map of Exon variants and RSOEx

H Representation of cluster in ENACTdb

186 **Figure S3: ENACT algorithm steps showing human *RUNX1T1* gene annotation.**
187 This figure illustrates ENACT algorithm decision steps for exons 4-8 in the 5' region
188 of the *RUNX1T1* gene. A) Selected isoforms with their NCBI protein identifiers show
189 several exonic variations. RISO (purple, with maximal number of coding exons)
190 includes exons in light blue, while other exons (from other isoforms) are in light
191 green. Panels from B-D depict step-by-step details. Genomic coordinates for relevant
192 exon(s) are shown to infer overlapping segments. Exons from isoforms other than
193 RISO are compared with *RSOEx_{RISO}* (initial RISO exons) to find genetically
194 overlapped entities (processing step discussed in B panel) and non-overlapping
195 (*NolEx*) set (panel C details various stages of detailing them). B) Overlapping exons
196 to *RSOEx_{RISO}* are first extracted and added to the *Exon_{variant}* set. C) *NolEx* set may
197 have singleton non-overlapping exons (*NolEx-A*) or multiple exons overlapping
198 among themselves (*NolEx-B*). In this example, we only have the *NolEx-B* set. This
199 set is processed iteratively to select representative exon for *RSOEx* till *NolEx-B* is
200 empty. In the iter-1 step, the smallest exon-6' is chosen to identify overlapping cases
201 (genetically overlapped exons, (*GoEx*)), which are exon 6 and 5-6. Using the
202 *selectExon* module (pseudocode shown inset), a representative exon-6 is selected for
203 *RSOEx*. Following the same approach, the Iter-2 step shows steps in choosing exon-5
204 and iter 3 for exon-7 to select a representative entity for *RSOEx*. After each iter and
205 selection of *RSOEx* representative entity, remaining exons from *GoEx* are added to
206 *Exon_{variant}* set, as shown in cyan colored section immediately below iter box D)
207 Shows relationships between *RSOEx* and *Exon_{variant}* set and illustrates n/c/b splice
208 variant annotation for *Exon_{variant}* group. Exon-5-6 overlapping with two *RSOEx*
209 instances is called intron retention case annotation discussed in the F panel. E) After
210 noting splice site variants, the prevalence feature is determined from the occurrence
211 of exons in listed isoforms and based on annotated as
212 constitutive/alternate/constitutive-like. F) Shows annotation step of intron retention
213 (IR). G) Association of translational attributes of exons 4-8 are shown where coding
214 genomic coordinate and 'aa' sequence are sourced for every exon instance from all its
215 isoform occurrences. Hash maps associate coding genomic coordinates and amino
216 acid sequence contributions with genomic coordinates as unique keys. This
217 collectively defines exons' noncoding/coding and dual status, and all attributes are
218 consolidated in EUIDs. H) Isoform composing these exons are shown with updated
219 EUIDs.

220

221 D. Figure S3-G: The penultimate step involves determining each exon's amino
222 acid coding potential and status, yielding block-I **protein-coding** scope
223 establishment and variability assessment. Each exon and its variants (*RSOEx*
224 + *Exon_{variant}*) are assessed for amino acid coding status as coding/noncoding
225 or dual. For example:

226 a. Exon-6: Its reference instance (6.0.0) occurs in two isoforms, where it
227 is part of CDS (has coding genomic coordinates) in one transcript and
228 UTR in the other, so it is assigned as dual ('D') global scope in Block-
229 I. Conversely, *Exon_{variant}* of exon-6 that undergoes 5' splice site

230 alteration (6.n.1) is **noncoding** in its occurring isoforms and is
231 assigned ‘U’ global scope in Block-I.

232 Exons contributing varying amino acid sequences in different isoforms are
233 assigned unique numeric codes as Block-1 local scope. For example,

234 • Coding and noncoding instances at reference exon 6 are differentiated
235 with block 1 local scope values ‘1’ and ‘-2’.
236 • Similarly, exon instances 4.0.0 and 8.0.0 differ in coding contributions
237 and yield at least 2 different ‘aa’ sequences. ENACT uses Block-I
238 code >1 to distinguish them and auto increments when encountering
239 every such unique instance.

240 At this stage of assigning **protein-coding** scope attribute (Block-1), additional
241 redundancy expectation (different ‘aa’ sequence and coding genomic
242 coordinates in unchanged genomic coordinates) was circumvented by notating
243 local scope values. These are mapped using the hash map to genomic
244 coordinate, representing *RSOEx* and *Exon_{variant}* (See Figure S3-G). More
245 relationship depiction at the ordinal position and transition between CDS and
246 UTR through splice site variations has been discussed comprehensively in
247 Figures 3 and 6 of the main manuscript.

248 Through this example, we demonstrate the robustness of our algorithm in capturing
249 complex exon relationships. We also show how ENACT handles redundant
250 annotations, where it tracks different splicing variations (at each ordinal position) and
251 intron retention while encompassing protein-coding potential.

252

253 **S4: Overview of ENACT Database resource**

254 Using our nomenclature, we have annotated exons of five widely studied model
255 organisms, *viz.* *Caenorhabditis elegans*, *Drosophila melanogaster*, *Danio rerio*, *Mus*
256 *musculus*, and *Homo sapiens* and documented them in the ENACT resource database
257 (ENACTdb, [3]). Database is publicly available at <https://www.iscbglab.in/enactdb/>.
258 Table S1 summarizes the number of annotated exons/transcripts of genes encoded in
259 five organisms available in ENACTdb.

260 **Table S1: Summary of gene/transcript/exon statistics in five model organisms.**

Organism	Number of protein-coding	Number of transcripts	Number of exons
----------	--------------------------	-----------------------	-----------------

	genes		
<i>C. elegans</i> (Ce)	19,972	28,534	1,25,054
<i>D. melanogaster</i> (Dm)	13,972	30,755	65,958
<i>D. rerio</i> (Dr)	26,374	48,821	2,68,035
<i>M. musculus</i> (Mm)	22,134	92,400	2,32,520
<i>H. sapiens</i> (Hs)	20,443	1,30,739	2,41,910

261

262

263

264 **References**

1. Tung KF, Pan CY, Chen CH, Lin WC: **Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset.** *Sci Rep* 2020, **10**:16245.
2. Lonn ME, Hudemann C, Berndt C, Cherkasov V, Capani F, Holmgren A, Lillig CH: **Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms.** *Antioxid Redox Signal* 2008, **10**:547-557.
3. Verma P, Thakur D, Pandit SB: **Exon Nomenclature and Classification of Transcripts database (ENACTdb): A resource for analyzing alternative splicing mediated proteome diversity.** *Bioinformatics Advances* 2024.
4. Grinev VV, Barneh F, Ilyushonak IM, Nakjang S, Smink J, van Oort A, Clough R, Seyani M, McNeill H, Reza M, et al: **RUNX1/RUNX1T1 mediates alternative splicing and reorganises the transcriptional landscape in leukemia.** *Nat Commun* 2021, **12**:520.

279